Step |
Hyp |
Ref |
Expression |
1 |
|
subsub2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) ) |
2 |
|
addsubass |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) ) |
3 |
|
addsub |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( ( A - B ) + C ) ) |
4 |
2 3
|
eqtr3d |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( A + ( C - B ) ) = ( ( A - B ) + C ) ) |
5 |
4
|
3com23 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - B ) ) = ( ( A - B ) + C ) ) |
6 |
1 5
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A - B ) + C ) ) |