Metamath Proof Explorer


Theorem subsub

Description: Law for double subtraction. (Contributed by NM, 13-May-2004)

Ref Expression
Assertion subsub
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A - B ) + C ) )

Proof

Step Hyp Ref Expression
1 subsub2
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) )
2 addsubass
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) )
3 addsub
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( ( A - B ) + C ) )
4 2 3 eqtr3d
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( A + ( C - B ) ) = ( ( A - B ) + C ) )
5 4 3com23
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - B ) ) = ( ( A - B ) + C ) )
6 1 5 eqtrd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A - B ) + C ) )