Step |
Hyp |
Ref |
Expression |
1 |
|
subcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
2 |
1
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
3 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
4 |
|
simp3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
5 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
6 |
|
subcl |
|- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
7 |
4 5 6
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C - B ) e. CC ) |
8 |
2 3 7
|
add12d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + ( A + ( C - B ) ) ) = ( A + ( ( B - C ) + ( C - B ) ) ) ) |
9 |
|
npncan2 |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + ( C - B ) ) = 0 ) |
10 |
9
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + ( C - B ) ) = 0 ) |
11 |
10
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( ( B - C ) + ( C - B ) ) ) = ( A + 0 ) ) |
12 |
3
|
addid1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + 0 ) = A ) |
13 |
8 11 12
|
3eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + ( A + ( C - B ) ) ) = A ) |
14 |
3 7
|
addcld |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - B ) ) e. CC ) |
15 |
|
subadd |
|- ( ( A e. CC /\ ( B - C ) e. CC /\ ( A + ( C - B ) ) e. CC ) -> ( ( A - ( B - C ) ) = ( A + ( C - B ) ) <-> ( ( B - C ) + ( A + ( C - B ) ) ) = A ) ) |
16 |
3 2 14 15
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) = ( A + ( C - B ) ) <-> ( ( B - C ) + ( A + ( C - B ) ) ) = A ) ) |
17 |
13 16
|
mpbird |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) ) |