Metamath Proof Explorer


Theorem subsub23d

Description: Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses subsub23d.1
|- ( ph -> A e. CC )
subsub23d.2
|- ( ph -> B e. CC )
subsub23d.3
|- ( ph -> C e. CC )
Assertion subsub23d
|- ( ph -> ( ( A - B ) = C <-> ( A - C ) = B ) )

Proof

Step Hyp Ref Expression
1 subsub23d.1
 |-  ( ph -> A e. CC )
2 subsub23d.2
 |-  ( ph -> B e. CC )
3 subsub23d.3
 |-  ( ph -> C e. CC )
4 subsub23
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( A - C ) = B ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A - B ) = C <-> ( A - C ) = B ) )