Description: Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subsub23d.1 | |- ( ph -> A e. CC ) |
|
subsub23d.2 | |- ( ph -> B e. CC ) |
||
subsub23d.3 | |- ( ph -> C e. CC ) |
||
Assertion | subsub23d | |- ( ph -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsub23d.1 | |- ( ph -> A e. CC ) |
|
2 | subsub23d.2 | |- ( ph -> B e. CC ) |
|
3 | subsub23d.3 | |- ( ph -> C e. CC ) |
|
4 | subsub23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |