Metamath Proof Explorer


Theorem subsub3

Description: Law for double subtraction. (Contributed by NM, 27-Jul-2005)

Ref Expression
Assertion subsub3
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A + C ) - B ) )

Proof

Step Hyp Ref Expression
1 subsub2
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) )
2 addsubass
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) )
3 2 3com23
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) )
4 1 3 eqtr4d
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A + C ) - B ) )