Step |
Hyp |
Ref |
Expression |
1 |
|
subsubc.d |
|- D = ( C |`cat H ) |
2 |
|
id |
|- ( J e. ( Subcat ` D ) -> J e. ( Subcat ` D ) ) |
3 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
4 |
2 3
|
subcssc |
|- ( J e. ( Subcat ` D ) -> J C_cat ( Homf ` D ) ) |
5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
6 |
|
subcrcl |
|- ( H e. ( Subcat ` C ) -> C e. Cat ) |
7 |
|
id |
|- ( H e. ( Subcat ` C ) -> H e. ( Subcat ` C ) ) |
8 |
|
eqidd |
|- ( H e. ( Subcat ` C ) -> dom dom H = dom dom H ) |
9 |
7 8
|
subcfn |
|- ( H e. ( Subcat ` C ) -> H Fn ( dom dom H X. dom dom H ) ) |
10 |
7 9 5
|
subcss1 |
|- ( H e. ( Subcat ` C ) -> dom dom H C_ ( Base ` C ) ) |
11 |
1 5 6 9 10
|
reschomf |
|- ( H e. ( Subcat ` C ) -> H = ( Homf ` D ) ) |
12 |
11
|
breq2d |
|- ( H e. ( Subcat ` C ) -> ( J C_cat H <-> J C_cat ( Homf ` D ) ) ) |
13 |
4 12
|
syl5ibr |
|- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) -> J C_cat H ) ) |
14 |
13
|
pm4.71rd |
|- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J C_cat H /\ J e. ( Subcat ` D ) ) ) ) |
15 |
|
simpr |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J C_cat H ) |
16 |
|
simpl |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> H e. ( Subcat ` C ) ) |
17 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
18 |
16 17
|
subcssc |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> H C_cat ( Homf ` C ) ) |
19 |
|
ssctr |
|- ( ( J C_cat H /\ H C_cat ( Homf ` C ) ) -> J C_cat ( Homf ` C ) ) |
20 |
15 18 19
|
syl2anc |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J C_cat ( Homf ` C ) ) |
21 |
12
|
biimpa |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J C_cat ( Homf ` D ) ) |
22 |
20 21
|
2thd |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J C_cat ( Homf ` C ) <-> J C_cat ( Homf ` D ) ) ) |
23 |
16
|
adantr |
|- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> H e. ( Subcat ` C ) ) |
24 |
9
|
adantr |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> H Fn ( dom dom H X. dom dom H ) ) |
25 |
24
|
adantr |
|- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> H Fn ( dom dom H X. dom dom H ) ) |
26 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
27 |
|
eqidd |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> dom dom J = dom dom J ) |
28 |
15 27
|
sscfn1 |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> J Fn ( dom dom J X. dom dom J ) ) |
29 |
28 24 15
|
ssc1 |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> dom dom J C_ dom dom H ) |
30 |
29
|
sselda |
|- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> x e. dom dom H ) |
31 |
1 23 25 26 30
|
subcid |
|- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> ( ( Id ` C ) ` x ) = ( ( Id ` D ) ` x ) ) |
32 |
31
|
eleq1d |
|- ( ( ( H e. ( Subcat ` C ) /\ J C_cat H ) /\ x e. dom dom J ) -> ( ( ( Id ` C ) ` x ) e. ( x J x ) <-> ( ( Id ` D ) ` x ) e. ( x J x ) ) ) |
33 |
32
|
ralbidva |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( A. x e. dom dom J ( ( Id ` C ) ` x ) e. ( x J x ) <-> A. x e. dom dom J ( ( Id ` D ) ` x ) e. ( x J x ) ) ) |
34 |
1
|
oveq1i |
|- ( D |`cat J ) = ( ( C |`cat H ) |`cat J ) |
35 |
6
|
adantr |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> C e. Cat ) |
36 |
|
dmexg |
|- ( H e. ( Subcat ` C ) -> dom H e. _V ) |
37 |
36
|
dmexd |
|- ( H e. ( Subcat ` C ) -> dom dom H e. _V ) |
38 |
37
|
adantr |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> dom dom H e. _V ) |
39 |
35 24 28 38 29
|
rescabs |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( ( C |`cat H ) |`cat J ) = ( C |`cat J ) ) |
40 |
34 39
|
eqtr2id |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( C |`cat J ) = ( D |`cat J ) ) |
41 |
40
|
eleq1d |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( ( C |`cat J ) e. Cat <-> ( D |`cat J ) e. Cat ) ) |
42 |
22 33 41
|
3anbi123d |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( ( J C_cat ( Homf ` C ) /\ A. x e. dom dom J ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) <-> ( J C_cat ( Homf ` D ) /\ A. x e. dom dom J ( ( Id ` D ) ` x ) e. ( x J x ) /\ ( D |`cat J ) e. Cat ) ) ) |
43 |
|
eqid |
|- ( C |`cat J ) = ( C |`cat J ) |
44 |
17 26 43 35 28
|
issubc3 |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J e. ( Subcat ` C ) <-> ( J C_cat ( Homf ` C ) /\ A. x e. dom dom J ( ( Id ` C ) ` x ) e. ( x J x ) /\ ( C |`cat J ) e. Cat ) ) ) |
45 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
46 |
|
eqid |
|- ( D |`cat J ) = ( D |`cat J ) |
47 |
1 7
|
subccat |
|- ( H e. ( Subcat ` C ) -> D e. Cat ) |
48 |
47
|
adantr |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> D e. Cat ) |
49 |
3 45 46 48 28
|
issubc3 |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J e. ( Subcat ` D ) <-> ( J C_cat ( Homf ` D ) /\ A. x e. dom dom J ( ( Id ` D ) ` x ) e. ( x J x ) /\ ( D |`cat J ) e. Cat ) ) ) |
50 |
42 44 49
|
3bitr4rd |
|- ( ( H e. ( Subcat ` C ) /\ J C_cat H ) -> ( J e. ( Subcat ` D ) <-> J e. ( Subcat ` C ) ) ) |
51 |
50
|
pm5.32da |
|- ( H e. ( Subcat ` C ) -> ( ( J C_cat H /\ J e. ( Subcat ` D ) ) <-> ( J C_cat H /\ J e. ( Subcat ` C ) ) ) ) |
52 |
14 51
|
bitrd |
|- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J C_cat H /\ J e. ( Subcat ` C ) ) ) ) |
53 |
52
|
biancomd |
|- ( H e. ( Subcat ` C ) -> ( J e. ( Subcat ` D ) <-> ( J e. ( Subcat ` C ) /\ J C_cat H ) ) ) |