| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubg.h |
|- H = ( G |`s S ) |
| 2 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 3 |
2
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> G e. Grp ) |
| 4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 5 |
4
|
subgss |
|- ( A e. ( SubGrp ` H ) -> A C_ ( Base ` H ) ) |
| 6 |
5
|
adantl |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ ( Base ` H ) ) |
| 7 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 8 |
7
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> S = ( Base ` H ) ) |
| 9 |
6 8
|
sseqtrrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ S ) |
| 10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 11 |
10
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 12 |
11
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> S C_ ( Base ` G ) ) |
| 13 |
9 12
|
sstrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ ( Base ` G ) ) |
| 14 |
1
|
oveq1i |
|- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
| 15 |
|
ressabs |
|- ( ( S e. ( SubGrp ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
| 16 |
14 15
|
eqtrid |
|- ( ( S e. ( SubGrp ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
| 17 |
9 16
|
syldan |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 18 |
|
eqid |
|- ( H |`s A ) = ( H |`s A ) |
| 19 |
18
|
subggrp |
|- ( A e. ( SubGrp ` H ) -> ( H |`s A ) e. Grp ) |
| 20 |
19
|
adantl |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( H |`s A ) e. Grp ) |
| 21 |
17 20
|
eqeltrrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( G |`s A ) e. Grp ) |
| 22 |
10
|
issubg |
|- ( A e. ( SubGrp ` G ) <-> ( G e. Grp /\ A C_ ( Base ` G ) /\ ( G |`s A ) e. Grp ) ) |
| 23 |
3 13 21 22
|
syl3anbrc |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A e. ( SubGrp ` G ) ) |
| 24 |
23 9
|
jca |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) |
| 25 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 26 |
25
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> H e. Grp ) |
| 27 |
|
simprr |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A C_ S ) |
| 28 |
7
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
| 29 |
27 28
|
sseqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
| 30 |
16
|
adantrl |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 31 |
|
eqid |
|- ( G |`s A ) = ( G |`s A ) |
| 32 |
31
|
subggrp |
|- ( A e. ( SubGrp ` G ) -> ( G |`s A ) e. Grp ) |
| 33 |
32
|
ad2antrl |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Grp ) |
| 34 |
30 33
|
eqeltrd |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Grp ) |
| 35 |
4
|
issubg |
|- ( A e. ( SubGrp ` H ) <-> ( H e. Grp /\ A C_ ( Base ` H ) /\ ( H |`s A ) e. Grp ) ) |
| 36 |
26 29 34 35
|
syl3anbrc |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A e. ( SubGrp ` H ) ) |
| 37 |
24 36
|
impbida |
|- ( S e. ( SubGrp ` G ) -> ( A e. ( SubGrp ` H ) <-> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) ) |