Step |
Hyp |
Ref |
Expression |
1 |
|
subsubg.h |
|- H = ( G |`s S ) |
2 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
3 |
2
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> G e. Grp ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
4
|
subgss |
|- ( A e. ( SubGrp ` H ) -> A C_ ( Base ` H ) ) |
6 |
5
|
adantl |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ ( Base ` H ) ) |
7 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
8 |
7
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> S = ( Base ` H ) ) |
9 |
6 8
|
sseqtrrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ S ) |
10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
11 |
10
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
12 |
11
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> S C_ ( Base ` G ) ) |
13 |
9 12
|
sstrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A C_ ( Base ` G ) ) |
14 |
1
|
oveq1i |
|- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
15 |
|
ressabs |
|- ( ( S e. ( SubGrp ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
16 |
14 15
|
eqtrid |
|- ( ( S e. ( SubGrp ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
17 |
9 16
|
syldan |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
18 |
|
eqid |
|- ( H |`s A ) = ( H |`s A ) |
19 |
18
|
subggrp |
|- ( A e. ( SubGrp ` H ) -> ( H |`s A ) e. Grp ) |
20 |
19
|
adantl |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( H |`s A ) e. Grp ) |
21 |
17 20
|
eqeltrrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( G |`s A ) e. Grp ) |
22 |
10
|
issubg |
|- ( A e. ( SubGrp ` G ) <-> ( G e. Grp /\ A C_ ( Base ` G ) /\ ( G |`s A ) e. Grp ) ) |
23 |
3 13 21 22
|
syl3anbrc |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> A e. ( SubGrp ` G ) ) |
24 |
23 9
|
jca |
|- ( ( S e. ( SubGrp ` G ) /\ A e. ( SubGrp ` H ) ) -> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) |
25 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
26 |
25
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> H e. Grp ) |
27 |
|
simprr |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A C_ S ) |
28 |
7
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
29 |
27 28
|
sseqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
30 |
16
|
adantrl |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
31 |
|
eqid |
|- ( G |`s A ) = ( G |`s A ) |
32 |
31
|
subggrp |
|- ( A e. ( SubGrp ` G ) -> ( G |`s A ) e. Grp ) |
33 |
32
|
ad2antrl |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Grp ) |
34 |
30 33
|
eqeltrd |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Grp ) |
35 |
4
|
issubg |
|- ( A e. ( SubGrp ` H ) <-> ( H e. Grp /\ A C_ ( Base ` H ) /\ ( H |`s A ) e. Grp ) ) |
36 |
26 29 34 35
|
syl3anbrc |
|- ( ( S e. ( SubGrp ` G ) /\ ( A e. ( SubGrp ` G ) /\ A C_ S ) ) -> A e. ( SubGrp ` H ) ) |
37 |
24 36
|
impbida |
|- ( S e. ( SubGrp ` G ) -> ( A e. ( SubGrp ` H ) <-> ( A e. ( SubGrp ` G ) /\ A C_ S ) ) ) |