Step |
Hyp |
Ref |
Expression |
1 |
|
subsubrg.s |
|- S = ( R |`s A ) |
2 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
3 |
2
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> R e. Ring ) |
4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
5 |
4
|
subrgss |
|- ( B e. ( SubRing ` S ) -> B C_ ( Base ` S ) ) |
6 |
5
|
adantl |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ ( Base ` S ) ) |
7 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
8 |
7
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> A = ( Base ` S ) ) |
9 |
6 8
|
sseqtrrd |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ A ) |
10 |
1
|
oveq1i |
|- ( S |`s B ) = ( ( R |`s A ) |`s B ) |
11 |
|
ressabs |
|- ( ( A e. ( SubRing ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
12 |
10 11
|
eqtrid |
|- ( ( A e. ( SubRing ` R ) /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) |
13 |
9 12
|
syldan |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( S |`s B ) = ( R |`s B ) ) |
14 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
15 |
14
|
subrgring |
|- ( B e. ( SubRing ` S ) -> ( S |`s B ) e. Ring ) |
16 |
15
|
adantl |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( S |`s B ) e. Ring ) |
17 |
13 16
|
eqeltrrd |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( R |`s B ) e. Ring ) |
18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
19 |
18
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
20 |
19
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> A C_ ( Base ` R ) ) |
21 |
9 20
|
sstrd |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ ( Base ` R ) ) |
22 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
23 |
1 22
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
24 |
23
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
25 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
26 |
25
|
subrg1cl |
|- ( B e. ( SubRing ` S ) -> ( 1r ` S ) e. B ) |
27 |
26
|
adantl |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` S ) e. B ) |
28 |
24 27
|
eqeltrd |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` R ) e. B ) |
29 |
21 28
|
jca |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( B C_ ( Base ` R ) /\ ( 1r ` R ) e. B ) ) |
30 |
18 22
|
issubrg |
|- ( B e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s B ) e. Ring ) /\ ( B C_ ( Base ` R ) /\ ( 1r ` R ) e. B ) ) ) |
31 |
3 17 29 30
|
syl21anbrc |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B e. ( SubRing ` R ) ) |
32 |
31 9
|
jca |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( B e. ( SubRing ` R ) /\ B C_ A ) ) |
33 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
34 |
33
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> S e. Ring ) |
35 |
12
|
adantrl |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( S |`s B ) = ( R |`s B ) ) |
36 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
37 |
36
|
subrgring |
|- ( B e. ( SubRing ` R ) -> ( R |`s B ) e. Ring ) |
38 |
37
|
ad2antrl |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( R |`s B ) e. Ring ) |
39 |
35 38
|
eqeltrd |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( S |`s B ) e. Ring ) |
40 |
|
simprr |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B C_ A ) |
41 |
7
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> A = ( Base ` S ) ) |
42 |
40 41
|
sseqtrd |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B C_ ( Base ` S ) ) |
43 |
23
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
44 |
22
|
subrg1cl |
|- ( B e. ( SubRing ` R ) -> ( 1r ` R ) e. B ) |
45 |
44
|
ad2antrl |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` R ) e. B ) |
46 |
43 45
|
eqeltrrd |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` S ) e. B ) |
47 |
42 46
|
jca |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) |
48 |
4 25
|
issubrg |
|- ( B e. ( SubRing ` S ) <-> ( ( S e. Ring /\ ( S |`s B ) e. Ring ) /\ ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) ) |
49 |
34 39 47 48
|
syl21anbrc |
|- ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B e. ( SubRing ` S ) ) |
50 |
32 49
|
impbida |
|- ( A e. ( SubRing ` R ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) ) |