| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubrg.s |  |-  S = ( R |`s A ) | 
						
							| 2 |  | subrgrcl |  |-  ( A e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> R e. Ring ) | 
						
							| 4 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 5 | 4 | subrgss |  |-  ( B e. ( SubRing ` S ) -> B C_ ( Base ` S ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ ( Base ` S ) ) | 
						
							| 7 | 1 | subrgbas |  |-  ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> A = ( Base ` S ) ) | 
						
							| 9 | 6 8 | sseqtrrd |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ A ) | 
						
							| 10 | 1 | oveq1i |  |-  ( S |`s B ) = ( ( R |`s A ) |`s B ) | 
						
							| 11 |  | ressabs |  |-  ( ( A e. ( SubRing ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) | 
						
							| 12 | 10 11 | eqtrid |  |-  ( ( A e. ( SubRing ` R ) /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) | 
						
							| 13 | 9 12 | syldan |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( S |`s B ) = ( R |`s B ) ) | 
						
							| 14 |  | eqid |  |-  ( S |`s B ) = ( S |`s B ) | 
						
							| 15 | 14 | subrgring |  |-  ( B e. ( SubRing ` S ) -> ( S |`s B ) e. Ring ) | 
						
							| 16 | 15 | adantl |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( S |`s B ) e. Ring ) | 
						
							| 17 | 13 16 | eqeltrrd |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( R |`s B ) e. Ring ) | 
						
							| 18 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 19 | 18 | subrgss |  |-  ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> A C_ ( Base ` R ) ) | 
						
							| 21 | 9 20 | sstrd |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B C_ ( Base ` R ) ) | 
						
							| 22 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 23 | 1 22 | subrg1 |  |-  ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` R ) = ( 1r ` S ) ) | 
						
							| 25 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 26 | 25 | subrg1cl |  |-  ( B e. ( SubRing ` S ) -> ( 1r ` S ) e. B ) | 
						
							| 27 | 26 | adantl |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` S ) e. B ) | 
						
							| 28 | 24 27 | eqeltrd |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( 1r ` R ) e. B ) | 
						
							| 29 | 21 28 | jca |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( B C_ ( Base ` R ) /\ ( 1r ` R ) e. B ) ) | 
						
							| 30 | 18 22 | issubrg |  |-  ( B e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s B ) e. Ring ) /\ ( B C_ ( Base ` R ) /\ ( 1r ` R ) e. B ) ) ) | 
						
							| 31 | 3 17 29 30 | syl21anbrc |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> B e. ( SubRing ` R ) ) | 
						
							| 32 | 31 9 | jca |  |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` S ) ) -> ( B e. ( SubRing ` R ) /\ B C_ A ) ) | 
						
							| 33 | 1 | subrgring |  |-  ( A e. ( SubRing ` R ) -> S e. Ring ) | 
						
							| 34 | 33 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> S e. Ring ) | 
						
							| 35 | 12 | adantrl |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( S |`s B ) = ( R |`s B ) ) | 
						
							| 36 |  | eqid |  |-  ( R |`s B ) = ( R |`s B ) | 
						
							| 37 | 36 | subrgring |  |-  ( B e. ( SubRing ` R ) -> ( R |`s B ) e. Ring ) | 
						
							| 38 | 37 | ad2antrl |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( R |`s B ) e. Ring ) | 
						
							| 39 | 35 38 | eqeltrd |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( S |`s B ) e. Ring ) | 
						
							| 40 |  | simprr |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B C_ A ) | 
						
							| 41 | 7 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> A = ( Base ` S ) ) | 
						
							| 42 | 40 41 | sseqtrd |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B C_ ( Base ` S ) ) | 
						
							| 43 | 23 | adantr |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` R ) = ( 1r ` S ) ) | 
						
							| 44 | 22 | subrg1cl |  |-  ( B e. ( SubRing ` R ) -> ( 1r ` R ) e. B ) | 
						
							| 45 | 44 | ad2antrl |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` R ) e. B ) | 
						
							| 46 | 43 45 | eqeltrrd |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( 1r ` S ) e. B ) | 
						
							| 47 | 42 46 | jca |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) | 
						
							| 48 | 4 25 | issubrg |  |-  ( B e. ( SubRing ` S ) <-> ( ( S e. Ring /\ ( S |`s B ) e. Ring ) /\ ( B C_ ( Base ` S ) /\ ( 1r ` S ) e. B ) ) ) | 
						
							| 49 | 34 39 47 48 | syl21anbrc |  |-  ( ( A e. ( SubRing ` R ) /\ ( B e. ( SubRing ` R ) /\ B C_ A ) ) -> B e. ( SubRing ` S ) ) | 
						
							| 50 | 32 49 | impbida |  |-  ( A e. ( SubRing ` R ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` R ) /\ B C_ A ) ) ) |