| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubrg.s |  |-  S = ( R |`s A ) | 
						
							| 2 | 1 | subsubrg |  |-  ( A e. ( SubRing ` R ) -> ( a e. ( SubRing ` S ) <-> ( a e. ( SubRing ` R ) /\ a C_ A ) ) ) | 
						
							| 3 |  | elin |  |-  ( a e. ( ( SubRing ` R ) i^i ~P A ) <-> ( a e. ( SubRing ` R ) /\ a e. ~P A ) ) | 
						
							| 4 |  | velpw |  |-  ( a e. ~P A <-> a C_ A ) | 
						
							| 5 | 4 | anbi2i |  |-  ( ( a e. ( SubRing ` R ) /\ a e. ~P A ) <-> ( a e. ( SubRing ` R ) /\ a C_ A ) ) | 
						
							| 6 | 3 5 | bitr2i |  |-  ( ( a e. ( SubRing ` R ) /\ a C_ A ) <-> a e. ( ( SubRing ` R ) i^i ~P A ) ) | 
						
							| 7 | 2 6 | bitrdi |  |-  ( A e. ( SubRing ` R ) -> ( a e. ( SubRing ` S ) <-> a e. ( ( SubRing ` R ) i^i ~P A ) ) ) | 
						
							| 8 | 7 | eqrdv |  |-  ( A e. ( SubRing ` R ) -> ( SubRing ` S ) = ( ( SubRing ` R ) i^i ~P A ) ) |