Step |
Hyp |
Ref |
Expression |
1 |
|
subsubrg.s |
|- S = ( R |`s A ) |
2 |
1
|
subsubrg |
|- ( A e. ( SubRing ` R ) -> ( a e. ( SubRing ` S ) <-> ( a e. ( SubRing ` R ) /\ a C_ A ) ) ) |
3 |
|
elin |
|- ( a e. ( ( SubRing ` R ) i^i ~P A ) <-> ( a e. ( SubRing ` R ) /\ a e. ~P A ) ) |
4 |
|
velpw |
|- ( a e. ~P A <-> a C_ A ) |
5 |
4
|
anbi2i |
|- ( ( a e. ( SubRing ` R ) /\ a e. ~P A ) <-> ( a e. ( SubRing ` R ) /\ a C_ A ) ) |
6 |
3 5
|
bitr2i |
|- ( ( a e. ( SubRing ` R ) /\ a C_ A ) <-> a e. ( ( SubRing ` R ) i^i ~P A ) ) |
7 |
2 6
|
bitrdi |
|- ( A e. ( SubRing ` R ) -> ( a e. ( SubRing ` S ) <-> a e. ( ( SubRing ` R ) i^i ~P A ) ) ) |
8 |
7
|
eqrdv |
|- ( A e. ( SubRing ` R ) -> ( SubRing ` S ) = ( ( SubRing ` R ) i^i ~P A ) ) |