| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubrng.s |
|- S = ( R |`s A ) |
| 2 |
|
subrngrcl |
|- ( A e. ( SubRng ` R ) -> R e. Rng ) |
| 3 |
2
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> R e. Rng ) |
| 4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 5 |
4
|
subrngss |
|- ( B e. ( SubRng ` S ) -> B C_ ( Base ` S ) ) |
| 6 |
5
|
adantl |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ ( Base ` S ) ) |
| 7 |
1
|
subrngbas |
|- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) |
| 8 |
7
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> A = ( Base ` S ) ) |
| 9 |
6 8
|
sseqtrrd |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ A ) |
| 10 |
1
|
oveq1i |
|- ( S |`s B ) = ( ( R |`s A ) |`s B ) |
| 11 |
|
ressabs |
|- ( ( A e. ( SubRng ` R ) /\ B C_ A ) -> ( ( R |`s A ) |`s B ) = ( R |`s B ) ) |
| 12 |
10 11
|
eqtrid |
|- ( ( A e. ( SubRng ` R ) /\ B C_ A ) -> ( S |`s B ) = ( R |`s B ) ) |
| 13 |
9 12
|
syldan |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( S |`s B ) = ( R |`s B ) ) |
| 14 |
|
eqid |
|- ( S |`s B ) = ( S |`s B ) |
| 15 |
14
|
subrngrng |
|- ( B e. ( SubRng ` S ) -> ( S |`s B ) e. Rng ) |
| 16 |
15
|
adantl |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( S |`s B ) e. Rng ) |
| 17 |
13 16
|
eqeltrrd |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( R |`s B ) e. Rng ) |
| 18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 19 |
18
|
subrngss |
|- ( A e. ( SubRng ` R ) -> A C_ ( Base ` R ) ) |
| 20 |
19
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> A C_ ( Base ` R ) ) |
| 21 |
9 20
|
sstrd |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B C_ ( Base ` R ) ) |
| 22 |
18
|
issubrng |
|- ( B e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s B ) e. Rng /\ B C_ ( Base ` R ) ) ) |
| 23 |
3 17 21 22
|
syl3anbrc |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> B e. ( SubRng ` R ) ) |
| 24 |
23 9
|
jca |
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` S ) ) -> ( B e. ( SubRng ` R ) /\ B C_ A ) ) |
| 25 |
1
|
subrngrng |
|- ( A e. ( SubRng ` R ) -> S e. Rng ) |
| 26 |
25
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> S e. Rng ) |
| 27 |
12
|
adantrl |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( S |`s B ) = ( R |`s B ) ) |
| 28 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
| 29 |
28
|
subrngrng |
|- ( B e. ( SubRng ` R ) -> ( R |`s B ) e. Rng ) |
| 30 |
29
|
ad2antrl |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( R |`s B ) e. Rng ) |
| 31 |
27 30
|
eqeltrd |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> ( S |`s B ) e. Rng ) |
| 32 |
|
simprr |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B C_ A ) |
| 33 |
7
|
adantr |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> A = ( Base ` S ) ) |
| 34 |
32 33
|
sseqtrd |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B C_ ( Base ` S ) ) |
| 35 |
4
|
issubrng |
|- ( B e. ( SubRng ` S ) <-> ( S e. Rng /\ ( S |`s B ) e. Rng /\ B C_ ( Base ` S ) ) ) |
| 36 |
26 31 34 35
|
syl3anbrc |
|- ( ( A e. ( SubRng ` R ) /\ ( B e. ( SubRng ` R ) /\ B C_ A ) ) -> B e. ( SubRng ` S ) ) |
| 37 |
24 36
|
impbida |
|- ( A e. ( SubRng ` R ) -> ( B e. ( SubRng ` S ) <-> ( B e. ( SubRng ` R ) /\ B C_ A ) ) ) |