Metamath Proof Explorer


Theorem subsubs2d

Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses subsubs4d.1
|- ( ph -> A e. No )
subsubs4d.2
|- ( ph -> B e. No )
subsubs4d.3
|- ( ph -> C e. No )
Assertion subsubs2d
|- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) )

Proof

Step Hyp Ref Expression
1 subsubs4d.1
 |-  ( ph -> A e. No )
2 subsubs4d.2
 |-  ( ph -> B e. No )
3 subsubs4d.3
 |-  ( ph -> C e. No )
4 2 3 subscld
 |-  ( ph -> ( B -s C ) e. No )
5 1 4 subsvald
 |-  ( ph -> ( A -s ( B -s C ) ) = ( A +s ( -us ` ( B -s C ) ) ) )
6 2 3 negsubsdi2d
 |-  ( ph -> ( -us ` ( B -s C ) ) = ( C -s B ) )
7 6 oveq2d
 |-  ( ph -> ( A +s ( -us ` ( B -s C ) ) ) = ( A +s ( C -s B ) ) )
8 5 7 eqtrd
 |-  ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) )