Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subsubs4d.1 | |- ( ph -> A e. No ) |
|
subsubs4d.2 | |- ( ph -> B e. No ) |
||
subsubs4d.3 | |- ( ph -> C e. No ) |
||
Assertion | subsubs2d | |- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsubs4d.1 | |- ( ph -> A e. No ) |
|
2 | subsubs4d.2 | |- ( ph -> B e. No ) |
|
3 | subsubs4d.3 | |- ( ph -> C e. No ) |
|
4 | 2 3 | subscld | |- ( ph -> ( B -s C ) e. No ) |
5 | 1 4 | subsvald | |- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( -us ` ( B -s C ) ) ) ) |
6 | 2 3 | negsubsdi2d | |- ( ph -> ( -us ` ( B -s C ) ) = ( C -s B ) ) |
7 | 6 | oveq2d | |- ( ph -> ( A +s ( -us ` ( B -s C ) ) ) = ( A +s ( C -s B ) ) ) |
8 | 5 7 | eqtrd | |- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) ) |