Step |
Hyp |
Ref |
Expression |
1 |
|
subsubs4d.1 |
|- ( ph -> A e. No ) |
2 |
|
subsubs4d.2 |
|- ( ph -> B e. No ) |
3 |
|
subsubs4d.3 |
|- ( ph -> C e. No ) |
4 |
2
|
negscld |
|- ( ph -> ( -us ` B ) e. No ) |
5 |
3
|
negscld |
|- ( ph -> ( -us ` C ) e. No ) |
6 |
1 4 5
|
addsassd |
|- ( ph -> ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) |
7 |
1 2
|
subsvald |
|- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
8 |
7
|
oveq1d |
|- ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) -s C ) ) |
9 |
1 4
|
addscld |
|- ( ph -> ( A +s ( -us ` B ) ) e. No ) |
10 |
9 3
|
subsvald |
|- ( ph -> ( ( A +s ( -us ` B ) ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) |
11 |
8 10
|
eqtrd |
|- ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) ) |
12 |
2 3
|
addscld |
|- ( ph -> ( B +s C ) e. No ) |
13 |
1 12
|
subsvald |
|- ( ph -> ( A -s ( B +s C ) ) = ( A +s ( -us ` ( B +s C ) ) ) ) |
14 |
|
negsdi |
|- ( ( B e. No /\ C e. No ) -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) |
15 |
2 3 14
|
syl2anc |
|- ( ph -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( A +s ( -us ` ( B +s C ) ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) |
17 |
13 16
|
eqtrd |
|- ( ph -> ( A -s ( B +s C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) ) |
18 |
6 11 17
|
3eqtr4d |
|- ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) ) |