Metamath Proof Explorer


Theorem subsubs4d

Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses subsubs4d.1
|- ( ph -> A e. No )
subsubs4d.2
|- ( ph -> B e. No )
subsubs4d.3
|- ( ph -> C e. No )
Assertion subsubs4d
|- ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) )

Proof

Step Hyp Ref Expression
1 subsubs4d.1
 |-  ( ph -> A e. No )
2 subsubs4d.2
 |-  ( ph -> B e. No )
3 subsubs4d.3
 |-  ( ph -> C e. No )
4 2 negscld
 |-  ( ph -> ( -us ` B ) e. No )
5 3 negscld
 |-  ( ph -> ( -us ` C ) e. No )
6 1 4 5 addsassd
 |-  ( ph -> ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) )
7 1 2 subsvald
 |-  ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) )
8 7 oveq1d
 |-  ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) -s C ) )
9 1 4 addscld
 |-  ( ph -> ( A +s ( -us ` B ) ) e. No )
10 9 3 subsvald
 |-  ( ph -> ( ( A +s ( -us ` B ) ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) )
11 8 10 eqtrd
 |-  ( ph -> ( ( A -s B ) -s C ) = ( ( A +s ( -us ` B ) ) +s ( -us ` C ) ) )
12 2 3 addscld
 |-  ( ph -> ( B +s C ) e. No )
13 1 12 subsvald
 |-  ( ph -> ( A -s ( B +s C ) ) = ( A +s ( -us ` ( B +s C ) ) ) )
14 negsdi
 |-  ( ( B e. No /\ C e. No ) -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) )
15 2 3 14 syl2anc
 |-  ( ph -> ( -us ` ( B +s C ) ) = ( ( -us ` B ) +s ( -us ` C ) ) )
16 15 oveq2d
 |-  ( ph -> ( A +s ( -us ` ( B +s C ) ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) )
17 13 16 eqtrd
 |-  ( ph -> ( A -s ( B +s C ) ) = ( A +s ( ( -us ` B ) +s ( -us ` C ) ) ) )
18 6 11 17 3eqtr4d
 |-  ( ph -> ( ( A -s B ) -s C ) = ( A -s ( B +s C ) ) )