Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | subsval | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |- ( x = A -> ( x +s ( -us ` y ) ) = ( A +s ( -us ` y ) ) ) |
|
2 | fveq2 | |- ( y = B -> ( -us ` y ) = ( -us ` B ) ) |
|
3 | 2 | oveq2d | |- ( y = B -> ( A +s ( -us ` y ) ) = ( A +s ( -us ` B ) ) ) |
4 | df-subs | |- -s = ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) ) |
|
5 | ovex | |- ( A +s ( -us ` B ) ) e. _V |
|
6 | 1 3 4 5 | ovmpo | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |