Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsval | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = A -> ( x +s ( -us ` y ) ) = ( A +s ( -us ` y ) ) ) |
|
| 2 | fveq2 | |- ( y = B -> ( -us ` y ) = ( -us ` B ) ) |
|
| 3 | 2 | oveq2d | |- ( y = B -> ( A +s ( -us ` y ) ) = ( A +s ( -us ` B ) ) ) |
| 4 | df-subs | |- -s = ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) ) |
|
| 5 | ovex | |- ( A +s ( -us ` B ) ) e. _V |
|
| 6 | 1 3 4 5 | ovmpo | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |