Metamath Proof Explorer


Theorem subsval

Description: The value of surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion subsval
|- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) )

Proof

Step Hyp Ref Expression
1 oveq1
 |-  ( x = A -> ( x +s ( -us ` y ) ) = ( A +s ( -us ` y ) ) )
2 fveq2
 |-  ( y = B -> ( -us ` y ) = ( -us ` B ) )
3 2 oveq2d
 |-  ( y = B -> ( A +s ( -us ` y ) ) = ( A +s ( -us ` B ) ) )
4 df-subs
 |-  -s = ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) )
5 ovex
 |-  ( A +s ( -us ` B ) ) e. _V
6 1 3 4 5 ovmpo
 |-  ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) )