Description: The value of surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subsvald.1 | |- ( ph -> A e. No ) |
|
| subsvald.2 | |- ( ph -> B e. No ) |
||
| Assertion | subsvald | |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsvald.1 | |- ( ph -> A e. No ) |
|
| 2 | subsvald.2 | |- ( ph -> B e. No ) |
|
| 3 | subsval | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |