Step |
Hyp |
Ref |
Expression |
1 |
|
subthinc.1 |
|- D = ( C |`cat J ) |
2 |
|
subthinc.j |
|- ( ph -> J e. ( Subcat ` C ) ) |
3 |
|
subthinc.c |
|- ( ph -> C e. ThinCat ) |
4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
5 |
|
eqidd |
|- ( ph -> dom dom J = dom dom J ) |
6 |
2 5
|
subcfn |
|- ( ph -> J Fn ( dom dom J X. dom dom J ) ) |
7 |
2 6 4
|
subcss1 |
|- ( ph -> dom dom J C_ ( Base ` C ) ) |
8 |
1 4 3 6 7
|
rescbas |
|- ( ph -> dom dom J = ( Base ` D ) ) |
9 |
1 4 3 6 7
|
reschom |
|- ( ph -> J = ( Hom ` D ) ) |
10 |
2
|
adantr |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> J e. ( Subcat ` C ) ) |
11 |
6
|
adantr |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> J Fn ( dom dom J X. dom dom J ) ) |
12 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
13 |
|
simprl |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> x e. dom dom J ) |
14 |
|
simprr |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> y e. dom dom J ) |
15 |
10 11 12 13 14
|
subcss2 |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> ( x J y ) C_ ( x ( Hom ` C ) y ) ) |
16 |
3
|
adantr |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> C e. ThinCat ) |
17 |
7
|
adantr |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> dom dom J C_ ( Base ` C ) ) |
18 |
17 13
|
sseldd |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> x e. ( Base ` C ) ) |
19 |
17 14
|
sseldd |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> y e. ( Base ` C ) ) |
20 |
16 18 19 4 12
|
thincmo |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E* f f e. ( x ( Hom ` C ) y ) ) |
21 |
|
mosssn2 |
|- ( E* f f e. ( x ( Hom ` C ) y ) <-> E. f ( x ( Hom ` C ) y ) C_ { f } ) |
22 |
20 21
|
sylib |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E. f ( x ( Hom ` C ) y ) C_ { f } ) |
23 |
|
sstr2 |
|- ( ( x J y ) C_ ( x ( Hom ` C ) y ) -> ( ( x ( Hom ` C ) y ) C_ { f } -> ( x J y ) C_ { f } ) ) |
24 |
23
|
eximdv |
|- ( ( x J y ) C_ ( x ( Hom ` C ) y ) -> ( E. f ( x ( Hom ` C ) y ) C_ { f } -> E. f ( x J y ) C_ { f } ) ) |
25 |
15 22 24
|
sylc |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E. f ( x J y ) C_ { f } ) |
26 |
|
mosssn2 |
|- ( E* f f e. ( x J y ) <-> E. f ( x J y ) C_ { f } ) |
27 |
25 26
|
sylibr |
|- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> E* f f e. ( x J y ) ) |
28 |
1 2
|
subccat |
|- ( ph -> D e. Cat ) |
29 |
8 9 27 28
|
isthincd |
|- ( ph -> D e. ThinCat ) |