Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
6 |
1 2 3 4 5
|
subgrprop2 |
|- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
7 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
8 |
|
subgruhgrfun |
|- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
9 |
7 8
|
sylan |
|- ( ( G e. UMGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
10 |
9
|
ancoms |
|- ( ( S SubGraph G /\ G e. UMGraph ) -> Fun ( iEdg ` S ) ) |
11 |
10
|
funfnd |
|- ( ( S SubGraph G /\ G e. UMGraph ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
12 |
11
|
adantl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
13 |
|
simplrl |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> S SubGraph G ) |
14 |
|
simplrr |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> G e. UMGraph ) |
15 |
|
simpr |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` S ) ) |
16 |
1 3
|
subumgredg2 |
|- ( ( S SubGraph G /\ G e. UMGraph /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
18 |
17
|
ralrimiva |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
19 |
|
fnfvrnss |
|- ( ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) -> ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
20 |
12 18 19
|
syl2anc |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
21 |
|
df-f |
|- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } <-> ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
22 |
12 20 21
|
sylanbrc |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
23 |
|
subgrv |
|- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
24 |
1 3
|
isumgrs |
|- ( S e. _V -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
25 |
24
|
adantr |
|- ( ( S e. _V /\ G e. _V ) -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
26 |
23 25
|
syl |
|- ( S SubGraph G -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
27 |
26
|
ad2antrl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
28 |
22 27
|
mpbird |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> S e. UMGraph ) |
29 |
28
|
ex |
|- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( ( S SubGraph G /\ G e. UMGraph ) -> S e. UMGraph ) ) |
30 |
6 29
|
syl |
|- ( S SubGraph G -> ( ( S SubGraph G /\ G e. UMGraph ) -> S e. UMGraph ) ) |
31 |
30
|
anabsi8 |
|- ( ( G e. UMGraph /\ S SubGraph G ) -> S e. UMGraph ) |