Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
6 |
1 2 3 4 5
|
subgrprop2 |
|- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
7 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
8 |
|
subgruhgrfun |
|- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
9 |
7 8
|
sylan |
|- ( ( G e. UPGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
10 |
9
|
ancoms |
|- ( ( S SubGraph G /\ G e. UPGraph ) -> Fun ( iEdg ` S ) ) |
11 |
10
|
funfnd |
|- ( ( S SubGraph G /\ G e. UPGraph ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
12 |
11
|
adantl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
13 |
|
fveq2 |
|- ( e = ( ( iEdg ` S ) ` x ) -> ( # ` e ) = ( # ` ( ( iEdg ` S ) ` x ) ) ) |
14 |
13
|
breq1d |
|- ( e = ( ( iEdg ` S ) ` x ) -> ( ( # ` e ) <_ 2 <-> ( # ` ( ( iEdg ` S ) ` x ) ) <_ 2 ) ) |
15 |
7
|
anim2i |
|- ( ( S SubGraph G /\ G e. UPGraph ) -> ( S SubGraph G /\ G e. UHGraph ) ) |
16 |
15
|
adantl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( S SubGraph G /\ G e. UHGraph ) ) |
17 |
16
|
ancomd |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( G e. UHGraph /\ S SubGraph G ) ) |
18 |
17
|
anim1i |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( G e. UHGraph /\ S SubGraph G ) /\ x e. dom ( iEdg ` S ) ) ) |
19 |
18
|
simplld |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> G e. UHGraph ) |
20 |
|
simpl |
|- ( ( S SubGraph G /\ G e. UPGraph ) -> S SubGraph G ) |
21 |
20
|
adantl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> S SubGraph G ) |
22 |
21
|
adantr |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> S SubGraph G ) |
23 |
|
simpr |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` S ) ) |
24 |
1 3 19 22 23
|
subgruhgredgd |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) |
25 |
4
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
26 |
7 25
|
syl |
|- ( G e. UPGraph -> Fun ( iEdg ` G ) ) |
27 |
26
|
ad2antll |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> Fun ( iEdg ` G ) ) |
28 |
27
|
adantr |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> Fun ( iEdg ` G ) ) |
29 |
|
simpll2 |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( iEdg ` S ) C_ ( iEdg ` G ) ) |
30 |
|
funssfv |
|- ( ( Fun ( iEdg ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` S ) ` x ) ) |
31 |
28 29 23 30
|
syl3anc |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` S ) ` x ) ) |
32 |
31
|
eqcomd |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) = ( ( iEdg ` G ) ` x ) ) |
33 |
32
|
fveq2d |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( # ` ( ( iEdg ` S ) ` x ) ) = ( # ` ( ( iEdg ` G ) ` x ) ) ) |
34 |
|
subgreldmiedg |
|- ( ( S SubGraph G /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` G ) ) |
35 |
34
|
ex |
|- ( S SubGraph G -> ( x e. dom ( iEdg ` S ) -> x e. dom ( iEdg ` G ) ) ) |
36 |
35
|
adantr |
|- ( ( S SubGraph G /\ G e. UPGraph ) -> ( x e. dom ( iEdg ` S ) -> x e. dom ( iEdg ` G ) ) ) |
37 |
36
|
adantl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( x e. dom ( iEdg ` S ) -> x e. dom ( iEdg ` G ) ) ) |
38 |
|
simpr |
|- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> G e. UPGraph ) |
39 |
26
|
funfnd |
|- ( G e. UPGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
40 |
39
|
adantl |
|- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
41 |
|
simpl |
|- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> x e. dom ( iEdg ` G ) ) |
42 |
2 4
|
upgrle |
|- ( ( G e. UPGraph /\ ( iEdg ` G ) Fn dom ( iEdg ` G ) /\ x e. dom ( iEdg ` G ) ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) |
43 |
38 40 41 42
|
syl3anc |
|- ( ( x e. dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) |
44 |
43
|
expcom |
|- ( G e. UPGraph -> ( x e. dom ( iEdg ` G ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) ) |
45 |
44
|
ad2antll |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( x e. dom ( iEdg ` G ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) ) |
46 |
37 45
|
syld |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( x e. dom ( iEdg ` S ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) ) |
47 |
46
|
imp |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( # ` ( ( iEdg ` G ) ` x ) ) <_ 2 ) |
48 |
33 47
|
eqbrtrd |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( # ` ( ( iEdg ` S ) ` x ) ) <_ 2 ) |
49 |
14 24 48
|
elrabd |
|- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
50 |
49
|
ralrimiva |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
51 |
|
fnfvrnss |
|- ( ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) -> ran ( iEdg ` S ) C_ { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
52 |
12 50 51
|
syl2anc |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ran ( iEdg ` S ) C_ { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
53 |
|
df-f |
|- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } <-> ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ ran ( iEdg ` S ) C_ { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
54 |
12 52 53
|
sylanbrc |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) |
55 |
|
subgrv |
|- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
56 |
1 3
|
isupgr |
|- ( S e. _V -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
57 |
56
|
adantr |
|- ( ( S e. _V /\ G e. _V ) -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
58 |
55 57
|
syl |
|- ( S SubGraph G -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
59 |
58
|
adantr |
|- ( ( S SubGraph G /\ G e. UPGraph ) -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
60 |
59
|
adantl |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> ( S e. UPGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ( ~P ( Vtx ` S ) \ { (/) } ) | ( # ` e ) <_ 2 } ) ) |
61 |
54 60
|
mpbird |
|- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UPGraph ) ) -> S e. UPGraph ) |
62 |
61
|
ex |
|- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( ( S SubGraph G /\ G e. UPGraph ) -> S e. UPGraph ) ) |
63 |
6 62
|
syl |
|- ( S SubGraph G -> ( ( S SubGraph G /\ G e. UPGraph ) -> S e. UPGraph ) ) |
64 |
63
|
anabsi8 |
|- ( ( G e. UPGraph /\ S SubGraph G ) -> S e. UPGraph ) |