Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | suc0 | |- suc (/) = { (/) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc | |- suc (/) = ( (/) u. { (/) } ) |
|
2 | uncom | |- ( (/) u. { (/) } ) = ( { (/) } u. (/) ) |
|
3 | un0 | |- ( { (/) } u. (/) ) = { (/) } |
|
4 | 1 2 3 | 3eqtri | |- suc (/) = { (/) } |