| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eloni |  |-  ( A e. On -> Ord A ) | 
						
							| 2 |  | ordn2lp |  |-  ( Ord A -> -. ( A e. B /\ B e. A ) ) | 
						
							| 3 |  | pm3.13 |  |-  ( -. ( A e. B /\ B e. A ) -> ( -. A e. B \/ -. B e. A ) ) | 
						
							| 4 | 1 2 3 | 3syl |  |-  ( A e. On -> ( -. A e. B \/ -. B e. A ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( -. A e. B \/ -. B e. A ) ) | 
						
							| 6 |  | eqimss |  |-  ( suc A = suc B -> suc A C_ suc B ) | 
						
							| 7 |  | sucssel |  |-  ( A e. On -> ( suc A C_ suc B -> A e. suc B ) ) | 
						
							| 8 | 6 7 | syl5 |  |-  ( A e. On -> ( suc A = suc B -> A e. suc B ) ) | 
						
							| 9 |  | elsuci |  |-  ( A e. suc B -> ( A e. B \/ A = B ) ) | 
						
							| 10 | 9 | ord |  |-  ( A e. suc B -> ( -. A e. B -> A = B ) ) | 
						
							| 11 | 10 | com12 |  |-  ( -. A e. B -> ( A e. suc B -> A = B ) ) | 
						
							| 12 | 8 11 | syl9 |  |-  ( A e. On -> ( -. A e. B -> ( suc A = suc B -> A = B ) ) ) | 
						
							| 13 |  | eqimss2 |  |-  ( suc A = suc B -> suc B C_ suc A ) | 
						
							| 14 |  | sucssel |  |-  ( B e. On -> ( suc B C_ suc A -> B e. suc A ) ) | 
						
							| 15 | 13 14 | syl5 |  |-  ( B e. On -> ( suc A = suc B -> B e. suc A ) ) | 
						
							| 16 |  | elsuci |  |-  ( B e. suc A -> ( B e. A \/ B = A ) ) | 
						
							| 17 | 16 | ord |  |-  ( B e. suc A -> ( -. B e. A -> B = A ) ) | 
						
							| 18 |  | eqcom |  |-  ( B = A <-> A = B ) | 
						
							| 19 | 17 18 | imbitrdi |  |-  ( B e. suc A -> ( -. B e. A -> A = B ) ) | 
						
							| 20 | 19 | com12 |  |-  ( -. B e. A -> ( B e. suc A -> A = B ) ) | 
						
							| 21 | 15 20 | syl9 |  |-  ( B e. On -> ( -. B e. A -> ( suc A = suc B -> A = B ) ) ) | 
						
							| 22 | 12 21 | jaao |  |-  ( ( A e. On /\ B e. On ) -> ( ( -. A e. B \/ -. B e. A ) -> ( suc A = suc B -> A = B ) ) ) | 
						
							| 23 | 5 22 | mpd |  |-  ( ( A e. On /\ B e. On ) -> ( suc A = suc B -> A = B ) ) | 
						
							| 24 |  | suceq |  |-  ( A = B -> suc A = suc B ) | 
						
							| 25 | 23 24 | impbid1 |  |-  ( ( A e. On /\ B e. On ) -> ( suc A = suc B <-> A = B ) ) |