Step |
Hyp |
Ref |
Expression |
1 |
|
sdomdom |
|- ( A ~< B -> A ~<_ B ) |
2 |
|
brdomi |
|- ( A ~<_ B -> E. f f : A -1-1-> B ) |
3 |
1 2
|
syl |
|- ( A ~< B -> E. f f : A -1-1-> B ) |
4 |
|
relsdom |
|- Rel ~< |
5 |
4
|
brrelex1i |
|- ( A ~< B -> A e. _V ) |
6 |
5
|
adantr |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> A e. _V ) |
7 |
|
vex |
|- f e. _V |
8 |
7
|
rnex |
|- ran f e. _V |
9 |
8
|
a1i |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ran f e. _V ) |
10 |
|
f1f1orn |
|- ( f : A -1-1-> B -> f : A -1-1-onto-> ran f ) |
11 |
10
|
adantl |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> f : A -1-1-onto-> ran f ) |
12 |
|
f1of1 |
|- ( f : A -1-1-onto-> ran f -> f : A -1-1-> ran f ) |
13 |
11 12
|
syl |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> f : A -1-1-> ran f ) |
14 |
|
f1dom2g |
|- ( ( A e. _V /\ ran f e. _V /\ f : A -1-1-> ran f ) -> A ~<_ ran f ) |
15 |
6 9 13 14
|
syl3anc |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> A ~<_ ran f ) |
16 |
|
sdomnen |
|- ( A ~< B -> -. A ~~ B ) |
17 |
16
|
adantr |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> -. A ~~ B ) |
18 |
|
ssdif0 |
|- ( B C_ ran f <-> ( B \ ran f ) = (/) ) |
19 |
|
simplr |
|- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> f : A -1-1-> B ) |
20 |
|
f1f |
|- ( f : A -1-1-> B -> f : A --> B ) |
21 |
20
|
frnd |
|- ( f : A -1-1-> B -> ran f C_ B ) |
22 |
19 21
|
syl |
|- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> ran f C_ B ) |
23 |
|
simpr |
|- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> B C_ ran f ) |
24 |
22 23
|
eqssd |
|- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> ran f = B ) |
25 |
|
dff1o5 |
|- ( f : A -1-1-onto-> B <-> ( f : A -1-1-> B /\ ran f = B ) ) |
26 |
19 24 25
|
sylanbrc |
|- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> f : A -1-1-onto-> B ) |
27 |
|
f1oen3g |
|- ( ( f e. _V /\ f : A -1-1-onto-> B ) -> A ~~ B ) |
28 |
7 26 27
|
sylancr |
|- ( ( ( A ~< B /\ f : A -1-1-> B ) /\ B C_ ran f ) -> A ~~ B ) |
29 |
28
|
ex |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( B C_ ran f -> A ~~ B ) ) |
30 |
18 29
|
syl5bir |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( ( B \ ran f ) = (/) -> A ~~ B ) ) |
31 |
17 30
|
mtod |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> -. ( B \ ran f ) = (/) ) |
32 |
|
neq0 |
|- ( -. ( B \ ran f ) = (/) <-> E. w w e. ( B \ ran f ) ) |
33 |
31 32
|
sylib |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> E. w w e. ( B \ ran f ) ) |
34 |
|
snssi |
|- ( w e. ( B \ ran f ) -> { w } C_ ( B \ ran f ) ) |
35 |
|
vex |
|- w e. _V |
36 |
|
en2sn |
|- ( ( A e. _V /\ w e. _V ) -> { A } ~~ { w } ) |
37 |
6 35 36
|
sylancl |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> { A } ~~ { w } ) |
38 |
4
|
brrelex2i |
|- ( A ~< B -> B e. _V ) |
39 |
38
|
adantr |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> B e. _V ) |
40 |
|
difexg |
|- ( B e. _V -> ( B \ ran f ) e. _V ) |
41 |
|
ssdomg |
|- ( ( B \ ran f ) e. _V -> ( { w } C_ ( B \ ran f ) -> { w } ~<_ ( B \ ran f ) ) ) |
42 |
39 40 41
|
3syl |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( { w } C_ ( B \ ran f ) -> { w } ~<_ ( B \ ran f ) ) ) |
43 |
|
endomtr |
|- ( ( { A } ~~ { w } /\ { w } ~<_ ( B \ ran f ) ) -> { A } ~<_ ( B \ ran f ) ) |
44 |
37 42 43
|
syl6an |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( { w } C_ ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) |
45 |
34 44
|
syl5 |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( w e. ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) |
46 |
45
|
exlimdv |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( E. w w e. ( B \ ran f ) -> { A } ~<_ ( B \ ran f ) ) ) |
47 |
33 46
|
mpd |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> { A } ~<_ ( B \ ran f ) ) |
48 |
|
disjdif |
|- ( ran f i^i ( B \ ran f ) ) = (/) |
49 |
48
|
a1i |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( ran f i^i ( B \ ran f ) ) = (/) ) |
50 |
|
undom |
|- ( ( ( A ~<_ ran f /\ { A } ~<_ ( B \ ran f ) ) /\ ( ran f i^i ( B \ ran f ) ) = (/) ) -> ( A u. { A } ) ~<_ ( ran f u. ( B \ ran f ) ) ) |
51 |
15 47 49 50
|
syl21anc |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( A u. { A } ) ~<_ ( ran f u. ( B \ ran f ) ) ) |
52 |
|
df-suc |
|- suc A = ( A u. { A } ) |
53 |
52
|
a1i |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> suc A = ( A u. { A } ) ) |
54 |
|
undif2 |
|- ( ran f u. ( B \ ran f ) ) = ( ran f u. B ) |
55 |
21
|
adantl |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ran f C_ B ) |
56 |
|
ssequn1 |
|- ( ran f C_ B <-> ( ran f u. B ) = B ) |
57 |
55 56
|
sylib |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> ( ran f u. B ) = B ) |
58 |
54 57
|
eqtr2id |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> B = ( ran f u. ( B \ ran f ) ) ) |
59 |
51 53 58
|
3brtr4d |
|- ( ( A ~< B /\ f : A -1-1-> B ) -> suc A ~<_ B ) |
60 |
3 59
|
exlimddv |
|- ( A ~< B -> suc A ~<_ B ) |