Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucexeloni | |- ( ( A e. On /\ suc A e. V ) -> suc A e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( A e. On -> Ord A ) |
|
| 2 | ordsuci | |- ( Ord A -> Ord suc A ) |
|
| 3 | 1 2 | syl | |- ( A e. On -> Ord suc A ) |
| 4 | elex | |- ( suc A e. V -> suc A e. _V ) |
|
| 5 | elong | |- ( suc A e. _V -> ( suc A e. On <-> Ord suc A ) ) |
|
| 6 | 5 | biimparc | |- ( ( Ord suc A /\ suc A e. _V ) -> suc A e. On ) |
| 7 | 3 4 6 | syl2an | |- ( ( A e. On /\ suc A e. V ) -> suc A e. On ) |