| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onelss |
|- ( A e. On -> ( x e. A -> x C_ A ) ) |
| 2 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
| 3 |
|
eqimss |
|- ( x = A -> x C_ A ) |
| 4 |
2 3
|
sylbi |
|- ( x e. { A } -> x C_ A ) |
| 5 |
4
|
a1i |
|- ( A e. On -> ( x e. { A } -> x C_ A ) ) |
| 6 |
1 5
|
orim12d |
|- ( A e. On -> ( ( x e. A \/ x e. { A } ) -> ( x C_ A \/ x C_ A ) ) ) |
| 7 |
|
df-suc |
|- suc A = ( A u. { A } ) |
| 8 |
7
|
eleq2i |
|- ( x e. suc A <-> x e. ( A u. { A } ) ) |
| 9 |
|
elun |
|- ( x e. ( A u. { A } ) <-> ( x e. A \/ x e. { A } ) ) |
| 10 |
8 9
|
bitr2i |
|- ( ( x e. A \/ x e. { A } ) <-> x e. suc A ) |
| 11 |
|
oridm |
|- ( ( x C_ A \/ x C_ A ) <-> x C_ A ) |
| 12 |
6 10 11
|
3imtr3g |
|- ( A e. On -> ( x e. suc A -> x C_ A ) ) |
| 13 |
|
sssucid |
|- A C_ suc A |
| 14 |
|
sstr2 |
|- ( x C_ A -> ( A C_ suc A -> x C_ suc A ) ) |
| 15 |
12 13 14
|
syl6mpi |
|- ( A e. On -> ( x e. suc A -> x C_ suc A ) ) |
| 16 |
15
|
ralrimiv |
|- ( A e. On -> A. x e. suc A x C_ suc A ) |
| 17 |
|
dftr3 |
|- ( Tr suc A <-> A. x e. suc A x C_ suc A ) |
| 18 |
16 17
|
sylibr |
|- ( A e. On -> Tr suc A ) |
| 19 |
|
onss |
|- ( A e. On -> A C_ On ) |
| 20 |
|
snssi |
|- ( A e. On -> { A } C_ On ) |
| 21 |
19 20
|
unssd |
|- ( A e. On -> ( A u. { A } ) C_ On ) |
| 22 |
7 21
|
eqsstrid |
|- ( A e. On -> suc A C_ On ) |
| 23 |
|
ordon |
|- Ord On |
| 24 |
|
trssord |
|- ( ( Tr suc A /\ suc A C_ On /\ Ord On ) -> Ord suc A ) |
| 25 |
24
|
3exp |
|- ( Tr suc A -> ( suc A C_ On -> ( Ord On -> Ord suc A ) ) ) |
| 26 |
23 25
|
mpii |
|- ( Tr suc A -> ( suc A C_ On -> Ord suc A ) ) |
| 27 |
18 22 26
|
sylc |
|- ( A e. On -> Ord suc A ) |
| 28 |
27
|
adantr |
|- ( ( A e. On /\ suc A e. V ) -> Ord suc A ) |
| 29 |
|
elong |
|- ( suc A e. V -> ( suc A e. On <-> Ord suc A ) ) |
| 30 |
29
|
adantl |
|- ( ( A e. On /\ suc A e. V ) -> ( suc A e. On <-> Ord suc A ) ) |
| 31 |
28 30
|
mpbird |
|- ( ( A e. On /\ suc A e. V ) -> suc A e. On ) |