Metamath Proof Explorer


Theorem sucidg

Description: Part of Proposition 7.23 of TakeutiZaring p. 41 (generalized). (Contributed by NM, 25-Mar-1995) (Proof shortened by Scott Fenton, 20-Feb-2012)

Ref Expression
Assertion sucidg
|- ( A e. V -> A e. suc A )

Proof

Step Hyp Ref Expression
1 eqid
 |-  A = A
2 1 olci
 |-  ( A e. A \/ A = A )
3 elsucg
 |-  ( A e. V -> ( A e. suc A <-> ( A e. A \/ A = A ) ) )
4 2 3 mpbiri
 |-  ( A e. V -> A e. suc A )