Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | sucprc | |- ( -. A e. _V -> suc A = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
2 | 1 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
3 | 2 | uneq2d | |- ( -. A e. _V -> ( A u. { A } ) = ( A u. (/) ) ) |
4 | df-suc | |- suc A = ( A u. { A } ) |
|
5 | un0 | |- ( A u. (/) ) = A |
|
6 | 5 | eqcomi | |- A = ( A u. (/) ) |
7 | 3 4 6 | 3eqtr4g | |- ( -. A e. _V -> suc A = A ) |