Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf is suctrALTcfVD without virtual deductions and was derived automatically from suctrALTcfVD . The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
1:: | |- (. Tr A ->. Tr A ). |
2:: | |- (. ......... ( z e. y /\ y e. suc A ) ->. ( z e. y /\ y e. suc A ) ). |
3:2: | |- (. ......... ( z e. y /\ y e. suc A ) ->. z e. y ). |
4:: | |- (. ................................... ....... y e. A ->. y e. A ). |
5:1,3,4: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) , y e. A ). ->. z e. A ). |
6:: | |- A C_ suc A |
7:5,6: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) , y e. A ). ->. z e. suc A ). |
8:7: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. ( y e. A -> z e. suc A ) ). |
9:: | |- (. ................................... ...... y = A ->. y = A ). |
10:3,9: | |- (. ........ (. ( z e. y /\ y e. suc A ) , y = A ). ->. z e. A ). |
11:10,6: | |- (. ........ (. ( z e. y /\ y e. suc A ) , y = A ). ->. z e. suc A ). |
12:11: | |- (. .......... ( z e. y /\ y e. suc A ) ->. ( y = A -> z e. suc A ) ). |
13:2: | |- (. .......... ( z e. y /\ y e. suc A ) ->. y e. suc A ). |
14:13: | |- (. .......... ( z e. y /\ y e. suc A ) ->. ( y e. A \/ y = A ) ). |
15:8,12,14: | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. z e. suc A ). |
16:15: | |- (. Tr A ->. ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ). |
17:16: | |- (. Tr A ->. A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ). |
18:17: | |- (. Tr A ->. Tr suc A ). |
qed:18: | |- ( Tr A -> Tr suc A ) |
Ref | Expression | ||
---|---|---|---|
Assertion | suctrALTcfVD | |- ( Tr A -> Tr suc A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid | |- A C_ suc A |
|
2 | idn1 | |- (. Tr A ->. Tr A ). |
|
3 | idn1 | |- (. ( z e. y /\ y e. suc A ) ->. ( z e. y /\ y e. suc A ) ). |
|
4 | simpl | |- ( ( z e. y /\ y e. suc A ) -> z e. y ) |
|
5 | 3 4 | el1 | |- (. ( z e. y /\ y e. suc A ) ->. z e. y ). |
6 | idn1 | |- (. y e. A ->. y e. A ). |
|
7 | trel | |- ( Tr A -> ( ( z e. y /\ y e. A ) -> z e. A ) ) |
|
8 | 7 | 3impib | |- ( ( Tr A /\ z e. y /\ y e. A ) -> z e. A ) |
9 | 2 5 6 8 | el123 | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ,. y e. A ). ->. z e. A ). |
10 | ssel2 | |- ( ( A C_ suc A /\ z e. A ) -> z e. suc A ) |
|
11 | 1 9 10 | el0321old | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ,. y e. A ). ->. z e. suc A ). |
12 | 11 | int3 | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. ( y e. A -> z e. suc A ) ). |
13 | idn1 | |- (. y = A ->. y = A ). |
|
14 | eleq2 | |- ( y = A -> ( z e. y <-> z e. A ) ) |
|
15 | 14 | biimpac | |- ( ( z e. y /\ y = A ) -> z e. A ) |
16 | 5 13 15 | el12 | |- (. (. ( z e. y /\ y e. suc A ) ,. y = A ). ->. z e. A ). |
17 | 1 16 10 | el021old | |- (. (. ( z e. y /\ y e. suc A ) ,. y = A ). ->. z e. suc A ). |
18 | 17 | int2 | |- (. ( z e. y /\ y e. suc A ) ->. ( y = A -> z e. suc A ) ). |
19 | simpr | |- ( ( z e. y /\ y e. suc A ) -> y e. suc A ) |
|
20 | 3 19 | el1 | |- (. ( z e. y /\ y e. suc A ) ->. y e. suc A ). |
21 | elsuci | |- ( y e. suc A -> ( y e. A \/ y = A ) ) |
|
22 | 20 21 | el1 | |- (. ( z e. y /\ y e. suc A ) ->. ( y e. A \/ y = A ) ). |
23 | jao | |- ( ( y e. A -> z e. suc A ) -> ( ( y = A -> z e. suc A ) -> ( ( y e. A \/ y = A ) -> z e. suc A ) ) ) |
|
24 | 23 | 3imp | |- ( ( ( y e. A -> z e. suc A ) /\ ( y = A -> z e. suc A ) /\ ( y e. A \/ y = A ) ) -> z e. suc A ) |
25 | 12 18 22 24 | el2122old | |- (. (. Tr A ,. ( z e. y /\ y e. suc A ) ). ->. z e. suc A ). |
26 | 25 | int2 | |- (. Tr A ->. ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ). |
27 | 26 | gen12 | |- (. Tr A ->. A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ). |
28 | dftr2 | |- ( Tr suc A <-> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
|
29 | 28 | biimpri | |- ( A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) -> Tr suc A ) |
30 | 27 29 | el1 | |- (. Tr A ->. Tr suc A ). |
31 | 30 | in1 | |- ( Tr A -> Tr suc A ) |