Step |
Hyp |
Ref |
Expression |
1 |
|
df-suc |
|- suc A = ( A u. { A } ) |
2 |
|
relsdom |
|- Rel ~< |
3 |
2
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
4 |
|
1on |
|- 1o e. On |
5 |
|
xpsneng |
|- ( ( A e. _V /\ 1o e. On ) -> ( A X. { 1o } ) ~~ A ) |
6 |
3 4 5
|
sylancl |
|- ( 1o ~< A -> ( A X. { 1o } ) ~~ A ) |
7 |
6
|
ensymd |
|- ( 1o ~< A -> A ~~ ( A X. { 1o } ) ) |
8 |
|
endom |
|- ( A ~~ ( A X. { 1o } ) -> A ~<_ ( A X. { 1o } ) ) |
9 |
7 8
|
syl |
|- ( 1o ~< A -> A ~<_ ( A X. { 1o } ) ) |
10 |
|
ensn1g |
|- ( A e. _V -> { A } ~~ 1o ) |
11 |
3 10
|
syl |
|- ( 1o ~< A -> { A } ~~ 1o ) |
12 |
|
ensdomtr |
|- ( ( { A } ~~ 1o /\ 1o ~< A ) -> { A } ~< A ) |
13 |
11 12
|
mpancom |
|- ( 1o ~< A -> { A } ~< A ) |
14 |
|
0ex |
|- (/) e. _V |
15 |
|
xpsneng |
|- ( ( A e. _V /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) |
16 |
3 14 15
|
sylancl |
|- ( 1o ~< A -> ( A X. { (/) } ) ~~ A ) |
17 |
16
|
ensymd |
|- ( 1o ~< A -> A ~~ ( A X. { (/) } ) ) |
18 |
|
sdomentr |
|- ( ( { A } ~< A /\ A ~~ ( A X. { (/) } ) ) -> { A } ~< ( A X. { (/) } ) ) |
19 |
13 17 18
|
syl2anc |
|- ( 1o ~< A -> { A } ~< ( A X. { (/) } ) ) |
20 |
|
sdomdom |
|- ( { A } ~< ( A X. { (/) } ) -> { A } ~<_ ( A X. { (/) } ) ) |
21 |
19 20
|
syl |
|- ( 1o ~< A -> { A } ~<_ ( A X. { (/) } ) ) |
22 |
|
1n0 |
|- 1o =/= (/) |
23 |
|
xpsndisj |
|- ( 1o =/= (/) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
24 |
22 23
|
mp1i |
|- ( 1o ~< A -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
25 |
|
undom |
|- ( ( ( A ~<_ ( A X. { 1o } ) /\ { A } ~<_ ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
26 |
9 21 24 25
|
syl21anc |
|- ( 1o ~< A -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
27 |
|
sdomentr |
|- ( ( 1o ~< A /\ A ~~ ( A X. { 1o } ) ) -> 1o ~< ( A X. { 1o } ) ) |
28 |
7 27
|
mpdan |
|- ( 1o ~< A -> 1o ~< ( A X. { 1o } ) ) |
29 |
|
sdomentr |
|- ( ( 1o ~< A /\ A ~~ ( A X. { (/) } ) ) -> 1o ~< ( A X. { (/) } ) ) |
30 |
17 29
|
mpdan |
|- ( 1o ~< A -> 1o ~< ( A X. { (/) } ) ) |
31 |
|
unxpdom |
|- ( ( 1o ~< ( A X. { 1o } ) /\ 1o ~< ( A X. { (/) } ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
32 |
28 30 31
|
syl2anc |
|- ( 1o ~< A -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
33 |
|
domtr |
|- ( ( ( A u. { A } ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
34 |
26 32 33
|
syl2anc |
|- ( 1o ~< A -> ( A u. { A } ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
35 |
|
xpen |
|- ( ( ( A X. { 1o } ) ~~ A /\ ( A X. { (/) } ) ~~ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
36 |
6 16 35
|
syl2anc |
|- ( 1o ~< A -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
37 |
|
domentr |
|- ( ( ( A u. { A } ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) -> ( A u. { A } ) ~<_ ( A X. A ) ) |
38 |
34 36 37
|
syl2anc |
|- ( 1o ~< A -> ( A u. { A } ) ~<_ ( A X. A ) ) |
39 |
1 38
|
eqbrtrid |
|- ( 1o ~< A -> suc A ~<_ ( A X. A ) ) |