| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 2 |
|
1z |
|- 1 e. ZZ |
| 3 |
2
|
a1i |
|- ( T. -> 1 e. ZZ ) |
| 4 |
|
0ss |
|- (/) C_ NN |
| 5 |
4
|
a1i |
|- ( T. -> (/) C_ NN ) |
| 6 |
|
simpr |
|- ( ( T. /\ k e. NN ) -> k e. NN ) |
| 7 |
6 1
|
eleqtrdi |
|- ( ( T. /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 8 |
|
c0ex |
|- 0 e. _V |
| 9 |
8
|
fvconst2 |
|- ( k e. ( ZZ>= ` 1 ) -> ( ( ( ZZ>= ` 1 ) X. { 0 } ) ` k ) = 0 ) |
| 10 |
7 9
|
syl |
|- ( ( T. /\ k e. NN ) -> ( ( ( ZZ>= ` 1 ) X. { 0 } ) ` k ) = 0 ) |
| 11 |
|
noel |
|- -. k e. (/) |
| 12 |
11
|
iffalsei |
|- if ( k e. (/) , A , 0 ) = 0 |
| 13 |
10 12
|
eqtr4di |
|- ( ( T. /\ k e. NN ) -> ( ( ( ZZ>= ` 1 ) X. { 0 } ) ` k ) = if ( k e. (/) , A , 0 ) ) |
| 14 |
11
|
pm2.21i |
|- ( k e. (/) -> A e. CC ) |
| 15 |
14
|
adantl |
|- ( ( T. /\ k e. (/) ) -> A e. CC ) |
| 16 |
1 3 5 13 15
|
zsum |
|- ( T. -> sum_ k e. (/) A = ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) ) |
| 17 |
16
|
mptru |
|- sum_ k e. (/) A = ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) |
| 18 |
|
fclim |
|- ~~> : dom ~~> --> CC |
| 19 |
|
ffun |
|- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
| 20 |
18 19
|
ax-mp |
|- Fun ~~> |
| 21 |
|
serclim0 |
|- ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) |
| 22 |
2 21
|
ax-mp |
|- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 |
| 23 |
|
funbrfv |
|- ( Fun ~~> -> ( seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 -> ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) = 0 ) ) |
| 24 |
20 22 23
|
mp2 |
|- ( ~~> ` seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) = 0 |
| 25 |
17 24
|
eqtri |
|- sum_ k e. (/) A = 0 |