Description: Equality deduction for sum. (Contributed by NM, 1-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumeq12dv.1 | |- ( ph -> A = B ) |
|
| sumeq12dv.2 | |- ( ( ph /\ k e. A ) -> C = D ) |
||
| Assertion | sumeq12dv | |- ( ph -> sum_ k e. A C = sum_ k e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq12dv.1 | |- ( ph -> A = B ) |
|
| 2 | sumeq12dv.2 | |- ( ( ph /\ k e. A ) -> C = D ) |
|
| 3 | 2 | sumeq2dv | |- ( ph -> sum_ k e. A C = sum_ k e. A D ) |
| 4 | 1 | sumeq1d | |- ( ph -> sum_ k e. A D = sum_ k e. B D ) |
| 5 | 3 4 | eqtrd | |- ( ph -> sum_ k e. A C = sum_ k e. B D ) |