Description: Equality deduction for sum. Note that unlike sumeq2dv , k may occur in ph . (Contributed by NM, 1-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sumeq2d.1 | |- ( ph -> A. k e. A B = C ) |
|
Assertion | sumeq2d | |- ( ph -> sum_ k e. A B = sum_ k e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq2d.1 | |- ( ph -> A. k e. A B = C ) |
|
2 | sumeq2 | |- ( A. k e. A B = C -> sum_ k e. A B = sum_ k e. A C ) |
|
3 | 1 2 | syl | |- ( ph -> sum_ k e. A B = sum_ k e. A C ) |