Metamath Proof Explorer


Theorem sumeq2d

Description: Equality deduction for sum. Note that unlike sumeq2dv , k may occur in ph . (Contributed by NM, 1-Nov-2005)

Ref Expression
Hypothesis sumeq2d.1
|- ( ph -> A. k e. A B = C )
Assertion sumeq2d
|- ( ph -> sum_ k e. A B = sum_ k e. A C )

Proof

Step Hyp Ref Expression
1 sumeq2d.1
 |-  ( ph -> A. k e. A B = C )
2 sumeq2
 |-  ( A. k e. A B = C -> sum_ k e. A B = sum_ k e. A C )
3 1 2 syl
 |-  ( ph -> sum_ k e. A B = sum_ k e. A C )