Metamath Proof Explorer


Theorem sumeq2i

Description: Equality inference for sum. (Contributed by NM, 3-Dec-2005)

Ref Expression
Hypothesis sumeq2i.1
|- ( k e. A -> B = C )
Assertion sumeq2i
|- sum_ k e. A B = sum_ k e. A C

Proof

Step Hyp Ref Expression
1 sumeq2i.1
 |-  ( k e. A -> B = C )
2 sumeq2
 |-  ( A. k e. A B = C -> sum_ k e. A B = sum_ k e. A C )
3 2 1 mprg
 |-  sum_ k e. A B = sum_ k e. A C