Metamath Proof Explorer


Theorem sumex

Description: A sum is a set. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Assertion sumex
|- sum_ k e. A B e. _V

Proof

Step Hyp Ref Expression
1 df-sum
 |-  sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) )
2 iotaex
 |-  ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) e. _V
3 1 2 eqeltri
 |-  sum_ k e. A B e. _V