| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 2 |
1
|
fvmpt2i |
|- ( k e. A -> ( ( k e. A |-> B ) ` k ) = ( _I ` B ) ) |
| 3 |
2
|
sumeq2i |
|- sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A ( _I ` B ) |
| 4 |
|
fveq2 |
|- ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) ) |
| 5 |
|
nffvmpt1 |
|- F/_ k ( ( k e. A |-> B ) ` j ) |
| 6 |
|
nfcv |
|- F/_ j ( ( k e. A |-> B ) ` k ) |
| 7 |
4 5 6
|
cbvsum |
|- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) |
| 8 |
|
sum2id |
|- sum_ k e. A B = sum_ k e. A ( _I ` B ) |
| 9 |
3 7 8
|
3eqtr4i |
|- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A B |