Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
2 |
|
summo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
summo.3 |
|- G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
4 |
|
fveq2 |
|- ( m = n -> ( ZZ>= ` m ) = ( ZZ>= ` n ) ) |
5 |
4
|
sseq2d |
|- ( m = n -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` n ) ) ) |
6 |
|
seqeq1 |
|- ( m = n -> seq m ( + , F ) = seq n ( + , F ) ) |
7 |
6
|
breq1d |
|- ( m = n -> ( seq m ( + , F ) ~~> y <-> seq n ( + , F ) ~~> y ) ) |
8 |
5 7
|
anbi12d |
|- ( m = n -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) <-> ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) |
9 |
8
|
cbvrexvw |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) <-> E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) |
10 |
|
reeanv |
|- ( E. m e. ZZ E. n e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) |
11 |
|
simprlr |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> seq m ( + , F ) ~~> x ) |
12 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) /\ k e. A ) -> B e. CC ) |
13 |
|
simplrl |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> m e. ZZ ) |
14 |
|
simplrr |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> n e. ZZ ) |
15 |
|
simprll |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> A C_ ( ZZ>= ` m ) ) |
16 |
|
simprrl |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> A C_ ( ZZ>= ` n ) ) |
17 |
1 12 13 14 15 16
|
sumrb |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> ( seq m ( + , F ) ~~> x <-> seq n ( + , F ) ~~> x ) ) |
18 |
11 17
|
mpbid |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> seq n ( + , F ) ~~> x ) |
19 |
|
simprrr |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> seq n ( + , F ) ~~> y ) |
20 |
|
climuni |
|- ( ( seq n ( + , F ) ~~> x /\ seq n ( + , F ) ~~> y ) -> x = y ) |
21 |
18 19 20
|
syl2anc |
|- ( ( ( ph /\ ( m e. ZZ /\ n e. ZZ ) ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) ) -> x = y ) |
22 |
21
|
exp31 |
|- ( ph -> ( ( m e. ZZ /\ n e. ZZ ) -> ( ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) -> x = y ) ) ) |
23 |
22
|
rexlimdvv |
|- ( ph -> ( E. m e. ZZ E. n e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) -> x = y ) ) |
24 |
10 23
|
syl5bir |
|- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) /\ E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) ) -> x = y ) ) |
25 |
24
|
expdimp |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. n e. ZZ ( A C_ ( ZZ>= ` n ) /\ seq n ( + , F ) ~~> y ) -> x = y ) ) |
26 |
9 25
|
syl5bi |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) -> x = y ) ) |
27 |
1 2 3
|
summolem2 |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
28 |
26 27
|
jaod |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) -> x = y ) ) |
29 |
1 2 3
|
summolem2 |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) -> y = x ) ) |
30 |
|
equcom |
|- ( y = x <-> x = y ) |
31 |
29 30
|
syl6ib |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
32 |
31
|
impancom |
|- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) -> x = y ) ) |
33 |
|
oveq2 |
|- ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) |
34 |
33
|
f1oeq2d |
|- ( m = n -> ( f : ( 1 ... m ) -1-1-onto-> A <-> f : ( 1 ... n ) -1-1-onto-> A ) ) |
35 |
|
fveq2 |
|- ( m = n -> ( seq 1 ( + , G ) ` m ) = ( seq 1 ( + , G ) ` n ) ) |
36 |
35
|
eqeq2d |
|- ( m = n -> ( y = ( seq 1 ( + , G ) ` m ) <-> y = ( seq 1 ( + , G ) ` n ) ) ) |
37 |
34 36
|
anbi12d |
|- ( m = n -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) ) ) |
38 |
37
|
exbidv |
|- ( m = n -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> E. f ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) ) ) |
39 |
|
f1oeq1 |
|- ( f = g -> ( f : ( 1 ... n ) -1-1-onto-> A <-> g : ( 1 ... n ) -1-1-onto-> A ) ) |
40 |
|
fveq1 |
|- ( f = g -> ( f ` n ) = ( g ` n ) ) |
41 |
40
|
csbeq1d |
|- ( f = g -> [_ ( f ` n ) / k ]_ B = [_ ( g ` n ) / k ]_ B ) |
42 |
41
|
mpteq2dv |
|- ( f = g -> ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) |
43 |
3 42
|
eqtrid |
|- ( f = g -> G = ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) |
44 |
43
|
seqeq3d |
|- ( f = g -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ) |
45 |
44
|
fveq1d |
|- ( f = g -> ( seq 1 ( + , G ) ` n ) = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) |
46 |
45
|
eqeq2d |
|- ( f = g -> ( y = ( seq 1 ( + , G ) ` n ) <-> y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
47 |
39 46
|
anbi12d |
|- ( f = g -> ( ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) <-> ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
48 |
47
|
cbvexvw |
|- ( E. f ( f : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` n ) ) <-> E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
49 |
38 48
|
bitrdi |
|- ( m = n -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
50 |
49
|
cbvrexvw |
|- ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) <-> E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
51 |
|
reeanv |
|- ( E. m e. NN E. n e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
52 |
|
exdistrv |
|- ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) <-> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
53 |
|
an4 |
|- ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) <-> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) ) |
54 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
55 |
|
fveq2 |
|- ( n = j -> ( f ` n ) = ( f ` j ) ) |
56 |
55
|
csbeq1d |
|- ( n = j -> [_ ( f ` n ) / k ]_ B = [_ ( f ` j ) / k ]_ B ) |
57 |
56
|
cbvmptv |
|- ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
58 |
3 57
|
eqtri |
|- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
59 |
|
fveq2 |
|- ( n = j -> ( g ` n ) = ( g ` j ) ) |
60 |
59
|
csbeq1d |
|- ( n = j -> [_ ( g ` n ) / k ]_ B = [_ ( g ` j ) / k ]_ B ) |
61 |
60
|
cbvmptv |
|- ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) |
62 |
|
simplr |
|- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> ( m e. NN /\ n e. NN ) ) |
63 |
|
simprl |
|- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
64 |
|
simprr |
|- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> g : ( 1 ... n ) -1-1-onto-> A ) |
65 |
1 54 58 61 62 63 64
|
summolem3 |
|- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> ( seq 1 ( + , G ) ` m ) = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) |
66 |
|
eqeq12 |
|- ( ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) -> ( x = y <-> ( seq 1 ( + , G ) ` m ) = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) |
67 |
65 66
|
syl5ibrcom |
|- ( ( ( ph /\ ( m e. NN /\ n e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) ) -> ( ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) -> x = y ) ) |
68 |
67
|
expimpd |
|- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... n ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( + , G ) ` m ) /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
69 |
53 68
|
syl5bi |
|- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
70 |
69
|
exlimdvv |
|- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
71 |
52 70
|
syl5bir |
|- ( ( ph /\ ( m e. NN /\ n e. NN ) ) -> ( ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
72 |
71
|
rexlimdvva |
|- ( ph -> ( E. m e. NN E. n e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
73 |
51 72
|
syl5bir |
|- ( ph -> ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) /\ E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) ) -> x = y ) ) |
74 |
73
|
expdimp |
|- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( E. n e. NN E. g ( g : ( 1 ... n ) -1-1-onto-> A /\ y = ( seq 1 ( + , ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) ) ` n ) ) -> x = y ) ) |
75 |
50 74
|
syl5bi |
|- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
76 |
32 75
|
jaod |
|- ( ( ph /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) -> x = y ) ) |
77 |
28 76
|
jaodan |
|- ( ( ph /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) ) -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) -> x = y ) ) |
78 |
77
|
expimpd |
|- ( ph -> ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) -> x = y ) ) |
79 |
78
|
alrimivv |
|- ( ph -> A. x A. y ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) -> x = y ) ) |
80 |
|
breq2 |
|- ( x = y -> ( seq m ( + , F ) ~~> x <-> seq m ( + , F ) ~~> y ) ) |
81 |
80
|
anbi2d |
|- ( x = y -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) ) |
82 |
81
|
rexbidv |
|- ( x = y -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) ) ) |
83 |
|
eqeq1 |
|- ( x = y -> ( x = ( seq 1 ( + , G ) ` m ) <-> y = ( seq 1 ( + , G ) ` m ) ) ) |
84 |
83
|
anbi2d |
|- ( x = y -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) |
85 |
84
|
exbidv |
|- ( x = y -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) |
86 |
85
|
rexbidv |
|- ( x = y -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) |
87 |
82 86
|
orbi12d |
|- ( x = y -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) ) |
88 |
87
|
mo4 |
|- ( E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) <-> A. x A. y ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) ) ) -> x = y ) ) |
89 |
79 88
|
sylibr |
|- ( ph -> E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , G ) ` m ) ) ) ) |