Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
2 |
|
summo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
summo.3 |
|- G = ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
4 |
|
fveq2 |
|- ( m = j -> ( ZZ>= ` m ) = ( ZZ>= ` j ) ) |
5 |
4
|
sseq2d |
|- ( m = j -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` j ) ) ) |
6 |
|
seqeq1 |
|- ( m = j -> seq m ( + , F ) = seq j ( + , F ) ) |
7 |
6
|
breq1d |
|- ( m = j -> ( seq m ( + , F ) ~~> x <-> seq j ( + , F ) ~~> x ) ) |
8 |
5 7
|
anbi12d |
|- ( m = j -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) ) |
9 |
8
|
cbvrexvw |
|- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) <-> E. j e. ZZ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) |
10 |
|
simplrr |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq j ( + , F ) ~~> x ) |
11 |
|
simplrl |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ ( ZZ>= ` j ) ) |
12 |
|
uzssz |
|- ( ZZ>= ` j ) C_ ZZ |
13 |
|
zssre |
|- ZZ C_ RR |
14 |
12 13
|
sstri |
|- ( ZZ>= ` j ) C_ RR |
15 |
11 14
|
sstrdi |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ RR ) |
16 |
|
ltso |
|- < Or RR |
17 |
|
soss |
|- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
18 |
15 16 17
|
mpisyl |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> < Or A ) |
19 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
20 |
|
ovex |
|- ( 1 ... m ) e. _V |
21 |
20
|
f1oen |
|- ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A ) |
22 |
21
|
ad2antll |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( 1 ... m ) ~~ A ) |
23 |
22
|
ensymd |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A ~~ ( 1 ... m ) ) |
24 |
|
enfii |
|- ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin ) |
25 |
19 23 24
|
sylancr |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A e. Fin ) |
26 |
|
fz1iso |
|- ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
27 |
18 25 26
|
syl2anc |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
28 |
2
|
ad5ant15 |
|- ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ k e. A ) -> B e. CC ) |
29 |
|
eqid |
|- ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( g ` n ) / k ]_ B ) |
30 |
|
simprll |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN ) |
31 |
|
simpllr |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> j e. ZZ ) |
32 |
|
simplrl |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` j ) ) |
33 |
|
simprlr |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
34 |
|
simprr |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
35 |
1 28 3 29 30 31 32 33 34
|
summolem2a |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) |
36 |
35
|
expr |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) ) |
37 |
36
|
exlimdv |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) ) |
38 |
27 37
|
mpd |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) |
39 |
|
climuni |
|- ( ( seq j ( + , F ) ~~> x /\ seq j ( + , F ) ~~> ( seq 1 ( + , G ) ` m ) ) -> x = ( seq 1 ( + , G ) ` m ) ) |
40 |
10 38 39
|
syl2anc |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ ( m e. NN /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> x = ( seq 1 ( + , G ) ` m ) ) |
41 |
40
|
anassrs |
|- ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> x = ( seq 1 ( + , G ) ` m ) ) |
42 |
|
eqeq2 |
|- ( y = ( seq 1 ( + , G ) ` m ) -> ( x = y <-> x = ( seq 1 ( + , G ) ` m ) ) ) |
43 |
41 42
|
syl5ibrcom |
|- ( ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) /\ f : ( 1 ... m ) -1-1-onto-> A ) -> ( y = ( seq 1 ( + , G ) ` m ) -> x = y ) ) |
44 |
43
|
expimpd |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
45 |
44
|
exlimdv |
|- ( ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) /\ m e. NN ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
46 |
45
|
rexlimdva |
|- ( ( ( ph /\ j e. ZZ ) /\ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
47 |
46
|
r19.29an |
|- ( ( ph /\ E. j e. ZZ ( A C_ ( ZZ>= ` j ) /\ seq j ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |
48 |
9 47
|
sylan2b |
|- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( + , G ) ` m ) ) -> x = y ) ) |