Step |
Hyp |
Ref |
Expression |
1 |
|
sumnnodd.1 |
|- ( ph -> F : NN --> CC ) |
2 |
|
sumnnodd.even0 |
|- ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( F ` k ) = 0 ) |
3 |
|
sumnnodd.sc |
|- ( ph -> seq 1 ( + , F ) ~~> B ) |
4 |
|
nfv |
|- F/ k ph |
5 |
|
nfcv |
|- F/_ k seq 1 ( + , F ) |
6 |
|
nfcv |
|- F/_ k 1 |
7 |
|
nfcv |
|- F/_ k + |
8 |
|
nfmpt1 |
|- F/_ k ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) |
9 |
6 7 8
|
nfseq |
|- F/_ k seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) |
10 |
|
nfmpt1 |
|- F/_ k ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) |
11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
12 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
13 |
|
seqex |
|- seq 1 ( + , F ) e. _V |
14 |
13
|
a1i |
|- ( ph -> seq 1 ( + , F ) e. _V ) |
15 |
1
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
16 |
11 12 15
|
serf |
|- ( ph -> seq 1 ( + , F ) : NN --> CC ) |
17 |
16
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) e. CC ) |
18 |
|
1nn |
|- 1 e. NN |
19 |
|
oveq2 |
|- ( k = 1 -> ( 2 x. k ) = ( 2 x. 1 ) ) |
20 |
19
|
oveq1d |
|- ( k = 1 -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. 1 ) - 1 ) ) |
21 |
|
eqid |
|- ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) = ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) |
22 |
|
ovex |
|- ( ( 2 x. 1 ) - 1 ) e. _V |
23 |
20 21 22
|
fvmpt |
|- ( 1 e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) = ( ( 2 x. 1 ) - 1 ) ) |
24 |
18 23
|
ax-mp |
|- ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) = ( ( 2 x. 1 ) - 1 ) |
25 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
26 |
25
|
oveq1i |
|- ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 ) |
27 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
28 |
24 26 27
|
3eqtri |
|- ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) = 1 |
29 |
28 18
|
eqeltri |
|- ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) e. NN |
30 |
29
|
a1i |
|- ( ph -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) e. NN ) |
31 |
|
2z |
|- 2 e. ZZ |
32 |
31
|
a1i |
|- ( k e. NN -> 2 e. ZZ ) |
33 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
34 |
32 33
|
zmulcld |
|- ( k e. NN -> ( 2 x. k ) e. ZZ ) |
35 |
33
|
peano2zd |
|- ( k e. NN -> ( k + 1 ) e. ZZ ) |
36 |
32 35
|
zmulcld |
|- ( k e. NN -> ( 2 x. ( k + 1 ) ) e. ZZ ) |
37 |
|
1zzd |
|- ( k e. NN -> 1 e. ZZ ) |
38 |
36 37
|
zsubcld |
|- ( k e. NN -> ( ( 2 x. ( k + 1 ) ) - 1 ) e. ZZ ) |
39 |
|
2re |
|- 2 e. RR |
40 |
39
|
a1i |
|- ( k e. NN -> 2 e. RR ) |
41 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
42 |
40 41
|
remulcld |
|- ( k e. NN -> ( 2 x. k ) e. RR ) |
43 |
42
|
lep1d |
|- ( k e. NN -> ( 2 x. k ) <_ ( ( 2 x. k ) + 1 ) ) |
44 |
|
2cnd |
|- ( k e. NN -> 2 e. CC ) |
45 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
46 |
|
1cnd |
|- ( k e. NN -> 1 e. CC ) |
47 |
44 45 46
|
adddid |
|- ( k e. NN -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + ( 2 x. 1 ) ) ) |
48 |
25
|
oveq2i |
|- ( ( 2 x. k ) + ( 2 x. 1 ) ) = ( ( 2 x. k ) + 2 ) |
49 |
47 48
|
eqtrdi |
|- ( k e. NN -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + 2 ) ) |
50 |
49
|
oveq1d |
|- ( k e. NN -> ( ( 2 x. ( k + 1 ) ) - 1 ) = ( ( ( 2 x. k ) + 2 ) - 1 ) ) |
51 |
44 45
|
mulcld |
|- ( k e. NN -> ( 2 x. k ) e. CC ) |
52 |
51 44 46
|
addsubassd |
|- ( k e. NN -> ( ( ( 2 x. k ) + 2 ) - 1 ) = ( ( 2 x. k ) + ( 2 - 1 ) ) ) |
53 |
27
|
oveq2i |
|- ( ( 2 x. k ) + ( 2 - 1 ) ) = ( ( 2 x. k ) + 1 ) |
54 |
53
|
a1i |
|- ( k e. NN -> ( ( 2 x. k ) + ( 2 - 1 ) ) = ( ( 2 x. k ) + 1 ) ) |
55 |
50 52 54
|
3eqtrrd |
|- ( k e. NN -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
56 |
43 55
|
breqtrd |
|- ( k e. NN -> ( 2 x. k ) <_ ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
57 |
|
eluz2 |
|- ( ( ( 2 x. ( k + 1 ) ) - 1 ) e. ( ZZ>= ` ( 2 x. k ) ) <-> ( ( 2 x. k ) e. ZZ /\ ( ( 2 x. ( k + 1 ) ) - 1 ) e. ZZ /\ ( 2 x. k ) <_ ( ( 2 x. ( k + 1 ) ) - 1 ) ) ) |
58 |
34 38 56 57
|
syl3anbrc |
|- ( k e. NN -> ( ( 2 x. ( k + 1 ) ) - 1 ) e. ( ZZ>= ` ( 2 x. k ) ) ) |
59 |
|
oveq2 |
|- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
60 |
59
|
oveq1d |
|- ( k = j -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
61 |
60
|
cbvmptv |
|- ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) = ( j e. NN |-> ( ( 2 x. j ) - 1 ) ) |
62 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( 2 x. j ) = ( 2 x. ( k + 1 ) ) ) |
63 |
62
|
oveq1d |
|- ( j = ( k + 1 ) -> ( ( 2 x. j ) - 1 ) = ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
64 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
65 |
61 63 64 38
|
fvmptd3 |
|- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` ( k + 1 ) ) = ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
66 |
34 37
|
zsubcld |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
67 |
21
|
fvmpt2 |
|- ( ( k e. NN /\ ( ( 2 x. k ) - 1 ) e. ZZ ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
68 |
66 67
|
mpdan |
|- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
69 |
68
|
oveq1d |
|- ( k e. NN -> ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) = ( ( ( 2 x. k ) - 1 ) + 1 ) ) |
70 |
51 46
|
npcand |
|- ( k e. NN -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) |
71 |
69 70
|
eqtrd |
|- ( k e. NN -> ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) = ( 2 x. k ) ) |
72 |
71
|
fveq2d |
|- ( k e. NN -> ( ZZ>= ` ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) ) = ( ZZ>= ` ( 2 x. k ) ) ) |
73 |
58 65 72
|
3eltr4d |
|- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` ( k + 1 ) ) e. ( ZZ>= ` ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) ) ) |
74 |
73
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` ( k + 1 ) ) e. ( ZZ>= ` ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) ) ) |
75 |
|
seqex |
|- seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. _V |
76 |
75
|
a1i |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. _V ) |
77 |
|
incom |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
78 |
|
inss2 |
|- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ { n e. NN | ( n / 2 ) e. NN } |
79 |
|
ssrin |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ { n e. NN | ( n / 2 ) e. NN } -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) C_ ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) |
80 |
78 79
|
ax-mp |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) C_ ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
81 |
77 80
|
eqsstri |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) C_ ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
82 |
|
disjdif |
|- ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) = (/) |
83 |
81 82
|
sseqtri |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) C_ (/) |
84 |
|
ss0 |
|- ( ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) C_ (/) -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = (/) ) |
85 |
83 84
|
mp1i |
|- ( ( ph /\ k e. NN ) -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = (/) ) |
86 |
|
uncom |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
87 |
|
inundif |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) = ( 1 ... ( ( 2 x. k ) - 1 ) ) |
88 |
86 87
|
eqtr2i |
|- ( 1 ... ( ( 2 x. k ) - 1 ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) |
89 |
88
|
a1i |
|- ( ( ph /\ k e. NN ) -> ( 1 ... ( ( 2 x. k ) - 1 ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) ) |
90 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin ) |
91 |
1
|
adantr |
|- ( ( ph /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> F : NN --> CC ) |
92 |
|
elfznn |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> j e. NN ) |
93 |
92
|
adantl |
|- ( ( ph /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> j e. NN ) |
94 |
91 93
|
ffvelrnd |
|- ( ( ph /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( F ` j ) e. CC ) |
95 |
94
|
adantlr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( F ` j ) e. CC ) |
96 |
85 89 90 95
|
fsumsplit |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) = ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) ) |
97 |
|
simpl |
|- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> ph ) |
98 |
|
ssrab2 |
|- { n e. NN | ( n / 2 ) e. NN } C_ NN |
99 |
78
|
sseli |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) -> j e. { n e. NN | ( n / 2 ) e. NN } ) |
100 |
98 99
|
sselid |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) -> j e. NN ) |
101 |
100
|
adantl |
|- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> j e. NN ) |
102 |
|
oveq1 |
|- ( k = j -> ( k / 2 ) = ( j / 2 ) ) |
103 |
102
|
eleq1d |
|- ( k = j -> ( ( k / 2 ) e. NN <-> ( j / 2 ) e. NN ) ) |
104 |
|
oveq1 |
|- ( n = k -> ( n / 2 ) = ( k / 2 ) ) |
105 |
104
|
eleq1d |
|- ( n = k -> ( ( n / 2 ) e. NN <-> ( k / 2 ) e. NN ) ) |
106 |
105
|
elrab |
|- ( k e. { n e. NN | ( n / 2 ) e. NN } <-> ( k e. NN /\ ( k / 2 ) e. NN ) ) |
107 |
106
|
simprbi |
|- ( k e. { n e. NN | ( n / 2 ) e. NN } -> ( k / 2 ) e. NN ) |
108 |
103 107
|
vtoclga |
|- ( j e. { n e. NN | ( n / 2 ) e. NN } -> ( j / 2 ) e. NN ) |
109 |
99 108
|
syl |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) -> ( j / 2 ) e. NN ) |
110 |
109
|
adantl |
|- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> ( j / 2 ) e. NN ) |
111 |
|
eleq1w |
|- ( k = j -> ( k e. NN <-> j e. NN ) ) |
112 |
111 103
|
3anbi23d |
|- ( k = j -> ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) <-> ( ph /\ j e. NN /\ ( j / 2 ) e. NN ) ) ) |
113 |
|
fveqeq2 |
|- ( k = j -> ( ( F ` k ) = 0 <-> ( F ` j ) = 0 ) ) |
114 |
112 113
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( F ` k ) = 0 ) <-> ( ( ph /\ j e. NN /\ ( j / 2 ) e. NN ) -> ( F ` j ) = 0 ) ) ) |
115 |
114 2
|
chvarvv |
|- ( ( ph /\ j e. NN /\ ( j / 2 ) e. NN ) -> ( F ` j ) = 0 ) |
116 |
97 101 110 115
|
syl3anc |
|- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) = 0 ) |
117 |
116
|
sumeq2dv |
|- ( ph -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) 0 ) |
118 |
|
fzfid |
|- ( ph -> ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin ) |
119 |
|
inss1 |
|- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) |
120 |
119
|
a1i |
|- ( ph -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
121 |
|
ssfi |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin /\ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
122 |
118 120 121
|
syl2anc |
|- ( ph -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
123 |
122
|
olcd |
|- ( ph -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( ZZ>= ` C ) \/ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) ) |
124 |
|
sumz |
|- ( ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( ZZ>= ` C ) \/ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) 0 = 0 ) |
125 |
123 124
|
syl |
|- ( ph -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) 0 = 0 ) |
126 |
117 125
|
eqtrd |
|- ( ph -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = 0 ) |
127 |
126
|
adantr |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = 0 ) |
128 |
127
|
oveq2d |
|- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) = ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + 0 ) ) |
129 |
|
fzfi |
|- ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin |
130 |
|
difss |
|- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) |
131 |
|
ssfi |
|- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin /\ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
132 |
129 130 131
|
mp2an |
|- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) e. Fin |
133 |
132
|
a1i |
|- ( ( ph /\ k e. NN ) -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
134 |
130
|
sseli |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
135 |
134 94
|
sylan2 |
|- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) e. CC ) |
136 |
135
|
adantlr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) e. CC ) |
137 |
133 136
|
fsumcl |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) e. CC ) |
138 |
137
|
addid1d |
|- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + 0 ) = sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) |
139 |
|
fveq2 |
|- ( j = i -> ( F ` j ) = ( F ` i ) ) |
140 |
139
|
cbvsumv |
|- sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) |
141 |
138 140
|
eqtrdi |
|- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + 0 ) = sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) ) |
142 |
128 141
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) = sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) ) |
143 |
|
fveq2 |
|- ( i = ( ( 2 x. j ) - 1 ) -> ( F ` i ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
144 |
|
fzfid |
|- ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) |
145 |
|
1zzd |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 1 e. ZZ ) |
146 |
66
|
adantr |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
147 |
31
|
a1i |
|- ( i e. ( 1 ... k ) -> 2 e. ZZ ) |
148 |
|
elfzelz |
|- ( i e. ( 1 ... k ) -> i e. ZZ ) |
149 |
147 148
|
zmulcld |
|- ( i e. ( 1 ... k ) -> ( 2 x. i ) e. ZZ ) |
150 |
|
1zzd |
|- ( i e. ( 1 ... k ) -> 1 e. ZZ ) |
151 |
149 150
|
zsubcld |
|- ( i e. ( 1 ... k ) -> ( ( 2 x. i ) - 1 ) e. ZZ ) |
152 |
151
|
adantl |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) e. ZZ ) |
153 |
26 27
|
eqtr2i |
|- 1 = ( ( 2 x. 1 ) - 1 ) |
154 |
|
1re |
|- 1 e. RR |
155 |
39 154
|
remulcli |
|- ( 2 x. 1 ) e. RR |
156 |
155
|
a1i |
|- ( i e. ( 1 ... k ) -> ( 2 x. 1 ) e. RR ) |
157 |
149
|
zred |
|- ( i e. ( 1 ... k ) -> ( 2 x. i ) e. RR ) |
158 |
|
1red |
|- ( i e. ( 1 ... k ) -> 1 e. RR ) |
159 |
148
|
zred |
|- ( i e. ( 1 ... k ) -> i e. RR ) |
160 |
39
|
a1i |
|- ( i e. ( 1 ... k ) -> 2 e. RR ) |
161 |
|
0le2 |
|- 0 <_ 2 |
162 |
161
|
a1i |
|- ( i e. ( 1 ... k ) -> 0 <_ 2 ) |
163 |
|
elfzle1 |
|- ( i e. ( 1 ... k ) -> 1 <_ i ) |
164 |
158 159 160 162 163
|
lemul2ad |
|- ( i e. ( 1 ... k ) -> ( 2 x. 1 ) <_ ( 2 x. i ) ) |
165 |
156 157 158 164
|
lesub1dd |
|- ( i e. ( 1 ... k ) -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. i ) - 1 ) ) |
166 |
153 165
|
eqbrtrid |
|- ( i e. ( 1 ... k ) -> 1 <_ ( ( 2 x. i ) - 1 ) ) |
167 |
166
|
adantl |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 1 <_ ( ( 2 x. i ) - 1 ) ) |
168 |
157
|
adantl |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( 2 x. i ) e. RR ) |
169 |
42
|
adantr |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( 2 x. k ) e. RR ) |
170 |
|
1red |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 1 e. RR ) |
171 |
159
|
adantl |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> i e. RR ) |
172 |
41
|
adantr |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> k e. RR ) |
173 |
39
|
a1i |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 2 e. RR ) |
174 |
161
|
a1i |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 0 <_ 2 ) |
175 |
|
elfzle2 |
|- ( i e. ( 1 ... k ) -> i <_ k ) |
176 |
175
|
adantl |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> i <_ k ) |
177 |
171 172 173 174 176
|
lemul2ad |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( 2 x. i ) <_ ( 2 x. k ) ) |
178 |
168 169 170 177
|
lesub1dd |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) <_ ( ( 2 x. k ) - 1 ) ) |
179 |
145 146 152 167 178
|
elfzd |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
180 |
149
|
zcnd |
|- ( i e. ( 1 ... k ) -> ( 2 x. i ) e. CC ) |
181 |
|
1cnd |
|- ( i e. ( 1 ... k ) -> 1 e. CC ) |
182 |
|
2cnd |
|- ( i e. ( 1 ... k ) -> 2 e. CC ) |
183 |
|
2ne0 |
|- 2 =/= 0 |
184 |
183
|
a1i |
|- ( i e. ( 1 ... k ) -> 2 =/= 0 ) |
185 |
180 181 182 184
|
divsubdird |
|- ( i e. ( 1 ... k ) -> ( ( ( 2 x. i ) - 1 ) / 2 ) = ( ( ( 2 x. i ) / 2 ) - ( 1 / 2 ) ) ) |
186 |
148
|
zcnd |
|- ( i e. ( 1 ... k ) -> i e. CC ) |
187 |
186 182 184
|
divcan3d |
|- ( i e. ( 1 ... k ) -> ( ( 2 x. i ) / 2 ) = i ) |
188 |
187
|
oveq1d |
|- ( i e. ( 1 ... k ) -> ( ( ( 2 x. i ) / 2 ) - ( 1 / 2 ) ) = ( i - ( 1 / 2 ) ) ) |
189 |
185 188
|
eqtrd |
|- ( i e. ( 1 ... k ) -> ( ( ( 2 x. i ) - 1 ) / 2 ) = ( i - ( 1 / 2 ) ) ) |
190 |
148 150
|
zsubcld |
|- ( i e. ( 1 ... k ) -> ( i - 1 ) e. ZZ ) |
191 |
160 184
|
rereccld |
|- ( i e. ( 1 ... k ) -> ( 1 / 2 ) e. RR ) |
192 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
193 |
192
|
a1i |
|- ( i e. ( 1 ... k ) -> ( 1 / 2 ) < 1 ) |
194 |
191 158 159 193
|
ltsub2dd |
|- ( i e. ( 1 ... k ) -> ( i - 1 ) < ( i - ( 1 / 2 ) ) ) |
195 |
|
2rp |
|- 2 e. RR+ |
196 |
|
rpreccl |
|- ( 2 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
197 |
195 196
|
mp1i |
|- ( i e. ( 1 ... k ) -> ( 1 / 2 ) e. RR+ ) |
198 |
159 197
|
ltsubrpd |
|- ( i e. ( 1 ... k ) -> ( i - ( 1 / 2 ) ) < i ) |
199 |
186 181
|
npcand |
|- ( i e. ( 1 ... k ) -> ( ( i - 1 ) + 1 ) = i ) |
200 |
198 199
|
breqtrrd |
|- ( i e. ( 1 ... k ) -> ( i - ( 1 / 2 ) ) < ( ( i - 1 ) + 1 ) ) |
201 |
|
btwnnz |
|- ( ( ( i - 1 ) e. ZZ /\ ( i - 1 ) < ( i - ( 1 / 2 ) ) /\ ( i - ( 1 / 2 ) ) < ( ( i - 1 ) + 1 ) ) -> -. ( i - ( 1 / 2 ) ) e. ZZ ) |
202 |
190 194 200 201
|
syl3anc |
|- ( i e. ( 1 ... k ) -> -. ( i - ( 1 / 2 ) ) e. ZZ ) |
203 |
|
nnz |
|- ( ( i - ( 1 / 2 ) ) e. NN -> ( i - ( 1 / 2 ) ) e. ZZ ) |
204 |
202 203
|
nsyl |
|- ( i e. ( 1 ... k ) -> -. ( i - ( 1 / 2 ) ) e. NN ) |
205 |
189 204
|
eqneltrd |
|- ( i e. ( 1 ... k ) -> -. ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) |
206 |
205
|
intnand |
|- ( i e. ( 1 ... k ) -> -. ( ( ( 2 x. i ) - 1 ) e. NN /\ ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) ) |
207 |
|
oveq1 |
|- ( n = ( ( 2 x. i ) - 1 ) -> ( n / 2 ) = ( ( ( 2 x. i ) - 1 ) / 2 ) ) |
208 |
207
|
eleq1d |
|- ( n = ( ( 2 x. i ) - 1 ) -> ( ( n / 2 ) e. NN <-> ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) ) |
209 |
208
|
elrab |
|- ( ( ( 2 x. i ) - 1 ) e. { n e. NN | ( n / 2 ) e. NN } <-> ( ( ( 2 x. i ) - 1 ) e. NN /\ ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) ) |
210 |
206 209
|
sylnibr |
|- ( i e. ( 1 ... k ) -> -. ( ( 2 x. i ) - 1 ) e. { n e. NN | ( n / 2 ) e. NN } ) |
211 |
210
|
adantl |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> -. ( ( 2 x. i ) - 1 ) e. { n e. NN | ( n / 2 ) e. NN } ) |
212 |
179 211
|
eldifd |
|- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
213 |
212
|
fmpttd |
|- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) --> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
214 |
|
eqidd |
|- ( x e. ( 1 ... k ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
215 |
|
oveq2 |
|- ( i = x -> ( 2 x. i ) = ( 2 x. x ) ) |
216 |
215
|
oveq1d |
|- ( i = x -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. x ) - 1 ) ) |
217 |
216
|
adantl |
|- ( ( x e. ( 1 ... k ) /\ i = x ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. x ) - 1 ) ) |
218 |
|
id |
|- ( x e. ( 1 ... k ) -> x e. ( 1 ... k ) ) |
219 |
|
ovexd |
|- ( x e. ( 1 ... k ) -> ( ( 2 x. x ) - 1 ) e. _V ) |
220 |
214 217 218 219
|
fvmptd |
|- ( x e. ( 1 ... k ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( 2 x. x ) - 1 ) ) |
221 |
220
|
eqcomd |
|- ( x e. ( 1 ... k ) -> ( ( 2 x. x ) - 1 ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) ) |
222 |
221
|
ad2antrr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( 2 x. x ) - 1 ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) ) |
223 |
|
simpr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) |
224 |
|
eqidd |
|- ( y e. ( 1 ... k ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
225 |
|
oveq2 |
|- ( i = y -> ( 2 x. i ) = ( 2 x. y ) ) |
226 |
225
|
oveq1d |
|- ( i = y -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
227 |
226
|
adantl |
|- ( ( y e. ( 1 ... k ) /\ i = y ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
228 |
|
id |
|- ( y e. ( 1 ... k ) -> y e. ( 1 ... k ) ) |
229 |
|
ovexd |
|- ( y e. ( 1 ... k ) -> ( ( 2 x. y ) - 1 ) e. _V ) |
230 |
224 227 228 229
|
fvmptd |
|- ( y e. ( 1 ... k ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) = ( ( 2 x. y ) - 1 ) ) |
231 |
230
|
ad2antlr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) = ( ( 2 x. y ) - 1 ) ) |
232 |
222 223 231
|
3eqtrd |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
233 |
|
2cnd |
|- ( x e. ( 1 ... k ) -> 2 e. CC ) |
234 |
|
elfzelz |
|- ( x e. ( 1 ... k ) -> x e. ZZ ) |
235 |
234
|
zcnd |
|- ( x e. ( 1 ... k ) -> x e. CC ) |
236 |
233 235
|
mulcld |
|- ( x e. ( 1 ... k ) -> ( 2 x. x ) e. CC ) |
237 |
236
|
ad2antrr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( 2 x. x ) e. CC ) |
238 |
|
2cnd |
|- ( y e. ( 1 ... k ) -> 2 e. CC ) |
239 |
|
elfzelz |
|- ( y e. ( 1 ... k ) -> y e. ZZ ) |
240 |
239
|
zcnd |
|- ( y e. ( 1 ... k ) -> y e. CC ) |
241 |
238 240
|
mulcld |
|- ( y e. ( 1 ... k ) -> ( 2 x. y ) e. CC ) |
242 |
241
|
ad2antlr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( 2 x. y ) e. CC ) |
243 |
|
1cnd |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> 1 e. CC ) |
244 |
|
simpr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
245 |
237 242 243 244
|
subcan2d |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( 2 x. x ) = ( 2 x. y ) ) |
246 |
235
|
ad2antrr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> x e. CC ) |
247 |
240
|
ad2antlr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> y e. CC ) |
248 |
|
2cnd |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> 2 e. CC ) |
249 |
183
|
a1i |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> 2 =/= 0 ) |
250 |
|
simpr |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> ( 2 x. x ) = ( 2 x. y ) ) |
251 |
246 247 248 249 250
|
mulcanad |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> x = y ) |
252 |
245 251
|
syldan |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> x = y ) |
253 |
232 252
|
syldan |
|- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> x = y ) |
254 |
253
|
adantll |
|- ( ( ( k e. NN /\ ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> x = y ) |
255 |
254
|
ex |
|- ( ( k e. NN /\ ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) ) -> ( ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) -> x = y ) ) |
256 |
255
|
ralrimivva |
|- ( k e. NN -> A. x e. ( 1 ... k ) A. y e. ( 1 ... k ) ( ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) -> x = y ) ) |
257 |
|
dff13 |
|- ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) --> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ A. x e. ( 1 ... k ) A. y e. ( 1 ... k ) ( ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) -> x = y ) ) ) |
258 |
213 256 257
|
sylanbrc |
|- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
259 |
|
1zzd |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> 1 e. ZZ ) |
260 |
33
|
adantr |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> k e. ZZ ) |
261 |
134
|
elfzelzd |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. ZZ ) |
262 |
|
zeo |
|- ( j e. ZZ -> ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) ) |
263 |
261 262
|
syl |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) ) |
264 |
263
|
adantl |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) ) |
265 |
|
eldifn |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> -. j e. { n e. NN | ( n / 2 ) e. NN } ) |
266 |
134 92
|
syl |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. NN ) |
267 |
266
|
adantr |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> j e. NN ) |
268 |
|
simpr |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> ( j / 2 ) e. ZZ ) |
269 |
267
|
nnred |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> j e. RR ) |
270 |
39
|
a1i |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 2 e. RR ) |
271 |
267
|
nngt0d |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 0 < j ) |
272 |
|
2pos |
|- 0 < 2 |
273 |
272
|
a1i |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 0 < 2 ) |
274 |
269 270 271 273
|
divgt0d |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 0 < ( j / 2 ) ) |
275 |
|
elnnz |
|- ( ( j / 2 ) e. NN <-> ( ( j / 2 ) e. ZZ /\ 0 < ( j / 2 ) ) ) |
276 |
268 274 275
|
sylanbrc |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> ( j / 2 ) e. NN ) |
277 |
|
oveq1 |
|- ( n = j -> ( n / 2 ) = ( j / 2 ) ) |
278 |
277
|
eleq1d |
|- ( n = j -> ( ( n / 2 ) e. NN <-> ( j / 2 ) e. NN ) ) |
279 |
278
|
elrab |
|- ( j e. { n e. NN | ( n / 2 ) e. NN } <-> ( j e. NN /\ ( j / 2 ) e. NN ) ) |
280 |
267 276 279
|
sylanbrc |
|- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> j e. { n e. NN | ( n / 2 ) e. NN } ) |
281 |
265 280
|
mtand |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> -. ( j / 2 ) e. ZZ ) |
282 |
281
|
adantl |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> -. ( j / 2 ) e. ZZ ) |
283 |
|
pm2.53 |
|- ( ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) -> ( -. ( j / 2 ) e. ZZ -> ( ( j + 1 ) / 2 ) e. ZZ ) ) |
284 |
264 282 283
|
sylc |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j + 1 ) / 2 ) e. ZZ ) |
285 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
286 |
285
|
oveq1i |
|- ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
287 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
288 |
286 287
|
eqtr2i |
|- 1 = ( ( 1 + 1 ) / 2 ) |
289 |
|
1red |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 1 e. RR ) |
290 |
289 289
|
readdcld |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( 1 + 1 ) e. RR ) |
291 |
92
|
nnred |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> j e. RR ) |
292 |
291 289
|
readdcld |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( j + 1 ) e. RR ) |
293 |
195
|
a1i |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 2 e. RR+ ) |
294 |
|
elfzle1 |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 1 <_ j ) |
295 |
289 291 289 294
|
leadd1dd |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( 1 + 1 ) <_ ( j + 1 ) ) |
296 |
290 292 293 295
|
lediv1dd |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( 1 + 1 ) / 2 ) <_ ( ( j + 1 ) / 2 ) ) |
297 |
288 296
|
eqbrtrid |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 1 <_ ( ( j + 1 ) / 2 ) ) |
298 |
134 297
|
syl |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> 1 <_ ( ( j + 1 ) / 2 ) ) |
299 |
298
|
adantl |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> 1 <_ ( ( j + 1 ) / 2 ) ) |
300 |
|
elfzel2 |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
301 |
300
|
zred |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( 2 x. k ) - 1 ) e. RR ) |
302 |
301 289
|
readdcld |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( ( 2 x. k ) - 1 ) + 1 ) e. RR ) |
303 |
|
elfzle2 |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> j <_ ( ( 2 x. k ) - 1 ) ) |
304 |
291 301 289 303
|
leadd1dd |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( j + 1 ) <_ ( ( ( 2 x. k ) - 1 ) + 1 ) ) |
305 |
292 302 293 304
|
lediv1dd |
|- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( j + 1 ) / 2 ) <_ ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) ) |
306 |
305
|
adantl |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( j + 1 ) / 2 ) <_ ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) ) |
307 |
51
|
adantr |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( 2 x. k ) e. CC ) |
308 |
|
1cnd |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> 1 e. CC ) |
309 |
307 308
|
npcand |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) |
310 |
309
|
oveq1d |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) = ( ( 2 x. k ) / 2 ) ) |
311 |
183
|
a1i |
|- ( k e. NN -> 2 =/= 0 ) |
312 |
45 44 311
|
divcan3d |
|- ( k e. NN -> ( ( 2 x. k ) / 2 ) = k ) |
313 |
312
|
adantr |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( 2 x. k ) / 2 ) = k ) |
314 |
310 313
|
eqtrd |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) = k ) |
315 |
306 314
|
breqtrd |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( j + 1 ) / 2 ) <_ k ) |
316 |
134 315
|
sylan2 |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j + 1 ) / 2 ) <_ k ) |
317 |
259 260 284 299 316
|
elfzd |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j + 1 ) / 2 ) e. ( 1 ... k ) ) |
318 |
266
|
nncnd |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. CC ) |
319 |
|
peano2cn |
|- ( j e. CC -> ( j + 1 ) e. CC ) |
320 |
|
2cnd |
|- ( j e. CC -> 2 e. CC ) |
321 |
183
|
a1i |
|- ( j e. CC -> 2 =/= 0 ) |
322 |
319 320 321
|
divcan2d |
|- ( j e. CC -> ( 2 x. ( ( j + 1 ) / 2 ) ) = ( j + 1 ) ) |
323 |
322
|
oveq1d |
|- ( j e. CC -> ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) = ( ( j + 1 ) - 1 ) ) |
324 |
|
pncan1 |
|- ( j e. CC -> ( ( j + 1 ) - 1 ) = j ) |
325 |
323 324
|
eqtr2d |
|- ( j e. CC -> j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
326 |
318 325
|
syl |
|- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
327 |
326
|
adantl |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
328 |
|
oveq2 |
|- ( m = ( ( j + 1 ) / 2 ) -> ( 2 x. m ) = ( 2 x. ( ( j + 1 ) / 2 ) ) ) |
329 |
328
|
oveq1d |
|- ( m = ( ( j + 1 ) / 2 ) -> ( ( 2 x. m ) - 1 ) = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
330 |
329
|
rspceeqv |
|- ( ( ( ( j + 1 ) / 2 ) e. ( 1 ... k ) /\ j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) -> E. m e. ( 1 ... k ) j = ( ( 2 x. m ) - 1 ) ) |
331 |
317 327 330
|
syl2anc |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> E. m e. ( 1 ... k ) j = ( ( 2 x. m ) - 1 ) ) |
332 |
|
eqidd |
|- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
333 |
|
oveq2 |
|- ( i = m -> ( 2 x. i ) = ( 2 x. m ) ) |
334 |
333
|
oveq1d |
|- ( i = m -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. m ) - 1 ) ) |
335 |
334
|
adantl |
|- ( ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) /\ i = m ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. m ) - 1 ) ) |
336 |
|
simpl |
|- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> m e. ( 1 ... k ) ) |
337 |
|
ovexd |
|- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( ( 2 x. m ) - 1 ) e. _V ) |
338 |
332 335 336 337
|
fvmptd |
|- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) = ( ( 2 x. m ) - 1 ) ) |
339 |
|
id |
|- ( j = ( ( 2 x. m ) - 1 ) -> j = ( ( 2 x. m ) - 1 ) ) |
340 |
339
|
eqcomd |
|- ( j = ( ( 2 x. m ) - 1 ) -> ( ( 2 x. m ) - 1 ) = j ) |
341 |
340
|
adantl |
|- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( ( 2 x. m ) - 1 ) = j ) |
342 |
338 341
|
eqtr2d |
|- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) |
343 |
342
|
ex |
|- ( m e. ( 1 ... k ) -> ( j = ( ( 2 x. m ) - 1 ) -> j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
344 |
343
|
adantl |
|- ( ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) /\ m e. ( 1 ... k ) ) -> ( j = ( ( 2 x. m ) - 1 ) -> j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
345 |
344
|
reximdva |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( E. m e. ( 1 ... k ) j = ( ( 2 x. m ) - 1 ) -> E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
346 |
331 345
|
mpd |
|- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) |
347 |
346
|
ralrimiva |
|- ( k e. NN -> A. j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) |
348 |
|
dffo3 |
|- ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) --> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ A. j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
349 |
213 347 348
|
sylanbrc |
|- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
350 |
|
df-f1o |
|- ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) |
351 |
258 349 350
|
sylanbrc |
|- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
352 |
351
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
353 |
|
eqidd |
|- ( j e. ( 1 ... k ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
354 |
|
oveq2 |
|- ( i = j -> ( 2 x. i ) = ( 2 x. j ) ) |
355 |
354
|
oveq1d |
|- ( i = j -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
356 |
355
|
adantl |
|- ( ( j e. ( 1 ... k ) /\ i = j ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
357 |
|
id |
|- ( j e. ( 1 ... k ) -> j e. ( 1 ... k ) ) |
358 |
|
ovexd |
|- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. _V ) |
359 |
353 356 357 358
|
fvmptd |
|- ( j e. ( 1 ... k ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` j ) = ( ( 2 x. j ) - 1 ) ) |
360 |
359
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` j ) = ( ( 2 x. j ) - 1 ) ) |
361 |
|
eleq1w |
|- ( j = i -> ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) |
362 |
361
|
anbi2d |
|- ( j = i -> ( ( ( ph /\ k e. NN ) /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) <-> ( ( ph /\ k e. NN ) /\ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) ) |
363 |
139
|
eleq1d |
|- ( j = i -> ( ( F ` j ) e. CC <-> ( F ` i ) e. CC ) ) |
364 |
362 363
|
imbi12d |
|- ( j = i -> ( ( ( ( ph /\ k e. NN ) /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) e. CC ) <-> ( ( ( ph /\ k e. NN ) /\ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` i ) e. CC ) ) ) |
365 |
364 136
|
chvarvv |
|- ( ( ( ph /\ k e. NN ) /\ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` i ) e. CC ) |
366 |
143 144 352 360 365
|
fsumf1o |
|- ( ( ph /\ k e. NN ) -> sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) = sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) ) |
367 |
96 142 366
|
3eqtrrd |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) = sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) ) |
368 |
|
ovex |
|- ( ( 2 x. k ) - 1 ) e. _V |
369 |
21
|
fvmpt2 |
|- ( ( k e. NN /\ ( ( 2 x. k ) - 1 ) e. _V ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
370 |
368 369
|
mpan2 |
|- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
371 |
370
|
oveq2d |
|- ( k e. NN -> ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) = ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
372 |
371
|
eqcomd |
|- ( k e. NN -> ( 1 ... ( ( 2 x. k ) - 1 ) ) = ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
373 |
372
|
sumeq1d |
|- ( k e. NN -> sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) = sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) ) |
374 |
373
|
adantl |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) = sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) ) |
375 |
367 374
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) = sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) ) |
376 |
|
elfznn |
|- ( j e. ( 1 ... k ) -> j e. NN ) |
377 |
376
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. NN ) |
378 |
1
|
adantr |
|- ( ( ph /\ j e. ( 1 ... k ) ) -> F : NN --> CC ) |
379 |
31
|
a1i |
|- ( j e. ( 1 ... k ) -> 2 e. ZZ ) |
380 |
|
elfzelz |
|- ( j e. ( 1 ... k ) -> j e. ZZ ) |
381 |
379 380
|
zmulcld |
|- ( j e. ( 1 ... k ) -> ( 2 x. j ) e. ZZ ) |
382 |
|
1zzd |
|- ( j e. ( 1 ... k ) -> 1 e. ZZ ) |
383 |
381 382
|
zsubcld |
|- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. ZZ ) |
384 |
|
0red |
|- ( j e. ( 1 ... k ) -> 0 e. RR ) |
385 |
39
|
a1i |
|- ( j e. ( 1 ... k ) -> 2 e. RR ) |
386 |
25 385
|
eqeltrid |
|- ( j e. ( 1 ... k ) -> ( 2 x. 1 ) e. RR ) |
387 |
|
1red |
|- ( j e. ( 1 ... k ) -> 1 e. RR ) |
388 |
386 387
|
resubcld |
|- ( j e. ( 1 ... k ) -> ( ( 2 x. 1 ) - 1 ) e. RR ) |
389 |
383
|
zred |
|- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. RR ) |
390 |
|
0lt1 |
|- 0 < 1 |
391 |
153
|
a1i |
|- ( j e. ( 1 ... k ) -> 1 = ( ( 2 x. 1 ) - 1 ) ) |
392 |
390 391
|
breqtrid |
|- ( j e. ( 1 ... k ) -> 0 < ( ( 2 x. 1 ) - 1 ) ) |
393 |
381
|
zred |
|- ( j e. ( 1 ... k ) -> ( 2 x. j ) e. RR ) |
394 |
376
|
nnred |
|- ( j e. ( 1 ... k ) -> j e. RR ) |
395 |
161
|
a1i |
|- ( j e. ( 1 ... k ) -> 0 <_ 2 ) |
396 |
|
elfzle1 |
|- ( j e. ( 1 ... k ) -> 1 <_ j ) |
397 |
387 394 385 395 396
|
lemul2ad |
|- ( j e. ( 1 ... k ) -> ( 2 x. 1 ) <_ ( 2 x. j ) ) |
398 |
386 393 387 397
|
lesub1dd |
|- ( j e. ( 1 ... k ) -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. j ) - 1 ) ) |
399 |
384 388 389 392 398
|
ltletrd |
|- ( j e. ( 1 ... k ) -> 0 < ( ( 2 x. j ) - 1 ) ) |
400 |
|
elnnz |
|- ( ( ( 2 x. j ) - 1 ) e. NN <-> ( ( ( 2 x. j ) - 1 ) e. ZZ /\ 0 < ( ( 2 x. j ) - 1 ) ) ) |
401 |
383 399 400
|
sylanbrc |
|- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. NN ) |
402 |
401
|
adantl |
|- ( ( ph /\ j e. ( 1 ... k ) ) -> ( ( 2 x. j ) - 1 ) e. NN ) |
403 |
378 402
|
ffvelrnd |
|- ( ( ph /\ j e. ( 1 ... k ) ) -> ( F ` ( ( 2 x. j ) - 1 ) ) e. CC ) |
404 |
403
|
adantlr |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( F ` ( ( 2 x. j ) - 1 ) ) e. CC ) |
405 |
60
|
fveq2d |
|- ( k = j -> ( F ` ( ( 2 x. k ) - 1 ) ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
406 |
405
|
cbvmptv |
|- ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) = ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) |
407 |
406
|
fvmpt2 |
|- ( ( j e. NN /\ ( F ` ( ( 2 x. j ) - 1 ) ) e. CC ) -> ( ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ` j ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
408 |
377 404 407
|
syl2anc |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ` j ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
409 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
410 |
409 11
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
411 |
408 410 404
|
fsumser |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) = ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ` k ) ) |
412 |
|
eqidd |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ( F ` j ) = ( F ` j ) ) |
413 |
155
|
a1i |
|- ( k e. NN -> ( 2 x. 1 ) e. RR ) |
414 |
|
1red |
|- ( k e. NN -> 1 e. RR ) |
415 |
161
|
a1i |
|- ( k e. NN -> 0 <_ 2 ) |
416 |
|
nnge1 |
|- ( k e. NN -> 1 <_ k ) |
417 |
414 41 40 415 416
|
lemul2ad |
|- ( k e. NN -> ( 2 x. 1 ) <_ ( 2 x. k ) ) |
418 |
413 42 414 417
|
lesub1dd |
|- ( k e. NN -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. k ) - 1 ) ) |
419 |
153 418
|
eqbrtrid |
|- ( k e. NN -> 1 <_ ( ( 2 x. k ) - 1 ) ) |
420 |
|
eluz2 |
|- ( ( ( 2 x. k ) - 1 ) e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ ( ( 2 x. k ) - 1 ) e. ZZ /\ 1 <_ ( ( 2 x. k ) - 1 ) ) ) |
421 |
37 66 419 420
|
syl3anbrc |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. ( ZZ>= ` 1 ) ) |
422 |
68 421
|
eqeltrd |
|- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) e. ( ZZ>= ` 1 ) ) |
423 |
422
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) e. ( ZZ>= ` 1 ) ) |
424 |
|
simpll |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ph ) |
425 |
|
simpr |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
426 |
371
|
adantr |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) = ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
427 |
425 426
|
eleqtrd |
|- ( ( k e. NN /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
428 |
427
|
adantll |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
429 |
424 428 94
|
syl2anc |
|- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ( F ` j ) e. CC ) |
430 |
412 423 429
|
fsumser |
|- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) = ( seq 1 ( + , F ) ` ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
431 |
375 411 430
|
3eqtr3d |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ` k ) = ( seq 1 ( + , F ) ` ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
432 |
4 5 9 10 11 12 14 17 3 30 74 76 431
|
climsuse |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B ) |
433 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
434 |
11 12 433 15
|
isum |
|- ( ph -> sum_ k e. NN ( F ` k ) = ( ~~> ` seq 1 ( + , F ) ) ) |
435 |
|
climrel |
|- Rel ~~> |
436 |
435
|
releldmi |
|- ( seq 1 ( + , F ) ~~> B -> seq 1 ( + , F ) e. dom ~~> ) |
437 |
3 436
|
syl |
|- ( ph -> seq 1 ( + , F ) e. dom ~~> ) |
438 |
|
climdm |
|- ( seq 1 ( + , F ) e. dom ~~> <-> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
439 |
437 438
|
sylib |
|- ( ph -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
440 |
|
climuni |
|- ( ( seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) /\ seq 1 ( + , F ) ~~> B ) -> ( ~~> ` seq 1 ( + , F ) ) = B ) |
441 |
439 3 440
|
syl2anc |
|- ( ph -> ( ~~> ` seq 1 ( + , F ) ) = B ) |
442 |
435
|
a1i |
|- ( ph -> Rel ~~> ) |
443 |
|
releldm |
|- ( ( Rel ~~> /\ seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B ) -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. dom ~~> ) |
444 |
442 432 443
|
syl2anc |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. dom ~~> ) |
445 |
|
climdm |
|- ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. dom ~~> <-> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ) ) |
446 |
444 445
|
sylib |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ) ) |
447 |
406
|
a1i |
|- ( ph -> ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) = ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) |
448 |
447
|
seqeq3d |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) = seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) |
449 |
448
|
fveq2d |
|- ( ph -> ( ~~> ` seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ) = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
450 |
446 449
|
breqtrd |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
451 |
|
climuni |
|- ( ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B /\ seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) -> B = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
452 |
432 450 451
|
syl2anc |
|- ( ph -> B = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
453 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) = ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) |
454 |
|
eqcom |
|- ( k = j <-> j = k ) |
455 |
|
eqcom |
|- ( ( F ` ( ( 2 x. k ) - 1 ) ) = ( F ` ( ( 2 x. j ) - 1 ) ) <-> ( F ` ( ( 2 x. j ) - 1 ) ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
456 |
405 454 455
|
3imtr3i |
|- ( j = k -> ( F ` ( ( 2 x. j ) - 1 ) ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
457 |
456
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ j = k ) -> ( F ` ( ( 2 x. j ) - 1 ) ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
458 |
1
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : NN --> CC ) |
459 |
421 11
|
eleqtrrdi |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. NN ) |
460 |
459
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( 2 x. k ) - 1 ) e. NN ) |
461 |
458 460
|
ffvelrnd |
|- ( ( ph /\ k e. NN ) -> ( F ` ( ( 2 x. k ) - 1 ) ) e. CC ) |
462 |
453 457 409 461
|
fvmptd |
|- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ` k ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
463 |
11 12 462 461
|
isum |
|- ( ph -> sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
464 |
452 463
|
eqtr4d |
|- ( ph -> B = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) |
465 |
434 441 464
|
3eqtrd |
|- ( ph -> sum_ k e. NN ( F ` k ) = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) |
466 |
432 465
|
jca |
|- ( ph -> ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B /\ sum_ k e. NN ( F ` k ) = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) ) |