Metamath Proof Explorer


Theorem sumnul

Description: The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1
|- Z = ( ZZ>= ` M )
isumcl.2
|- ( ph -> M e. ZZ )
isumcl.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumcl.4
|- ( ( ph /\ k e. Z ) -> A e. CC )
sumnul.5
|- ( ph -> -. seq M ( + , F ) e. dom ~~> )
Assertion sumnul
|- ( ph -> sum_ k e. Z A = (/) )

Proof

Step Hyp Ref Expression
1 isumcl.1
 |-  Z = ( ZZ>= ` M )
2 isumcl.2
 |-  ( ph -> M e. ZZ )
3 isumcl.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
4 isumcl.4
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
5 sumnul.5
 |-  ( ph -> -. seq M ( + , F ) e. dom ~~> )
6 1 2 3 4 isum
 |-  ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) )
7 ndmfv
 |-  ( -. seq M ( + , F ) e. dom ~~> -> ( ~~> ` seq M ( + , F ) ) = (/) )
8 5 7 syl
 |-  ( ph -> ( ~~> ` seq M ( + , F ) ) = (/) )
9 6 8 eqtrd
 |-  ( ph -> sum_ k e. Z A = (/) )