Description: The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumcl.1 | |- Z = ( ZZ>= ` M ) |
|
isumcl.2 | |- ( ph -> M e. ZZ ) |
||
isumcl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
isumcl.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
sumnul.5 | |- ( ph -> -. seq M ( + , F ) e. dom ~~> ) |
||
Assertion | sumnul | |- ( ph -> sum_ k e. Z A = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumcl.1 | |- Z = ( ZZ>= ` M ) |
|
2 | isumcl.2 | |- ( ph -> M e. ZZ ) |
|
3 | isumcl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
4 | isumcl.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
5 | sumnul.5 | |- ( ph -> -. seq M ( + , F ) e. dom ~~> ) |
|
6 | 1 2 3 4 | isum | |- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) ) |
7 | ndmfv | |- ( -. seq M ( + , F ) e. dom ~~> -> ( ~~> ` seq M ( + , F ) ) = (/) ) |
|
8 | 5 7 | syl | |- ( ph -> ( ~~> ` seq M ( + , F ) ) = (/) ) |
9 | 6 8 | eqtrd | |- ( ph -> sum_ k e. Z A = (/) ) |