Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
|- F = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
2 |
|
summo.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
sumrb.4 |
|- ( ph -> M e. ZZ ) |
4 |
|
sumrb.5 |
|- ( ph -> N e. ZZ ) |
5 |
|
sumrb.6 |
|- ( ph -> A C_ ( ZZ>= ` M ) ) |
6 |
|
sumrb.7 |
|- ( ph -> A C_ ( ZZ>= ` N ) ) |
7 |
4
|
adantr |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
8 |
|
seqex |
|- seq M ( + , F ) e. _V |
9 |
|
climres |
|- ( ( N e. ZZ /\ seq M ( + , F ) e. _V ) -> ( ( seq M ( + , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( + , F ) ~~> C ) ) |
10 |
7 8 9
|
sylancl |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( + , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( + , F ) ~~> C ) ) |
11 |
2
|
adantlr |
|- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ k e. A ) -> B e. CC ) |
12 |
|
simpr |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ( ZZ>= ` M ) ) |
13 |
1 11 12
|
sumrblem |
|- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( + , F ) |` ( ZZ>= ` N ) ) = seq N ( + , F ) ) |
14 |
6 13
|
mpidan |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) |` ( ZZ>= ` N ) ) = seq N ( + , F ) ) |
15 |
14
|
breq1d |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( + , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
16 |
10 15
|
bitr3d |
|- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
17 |
2
|
adantlr |
|- ( ( ( ph /\ M e. ( ZZ>= ` N ) ) /\ k e. A ) -> B e. CC ) |
18 |
|
simpr |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` N ) ) |
19 |
1 17 18
|
sumrblem |
|- ( ( ( ph /\ M e. ( ZZ>= ` N ) ) /\ A C_ ( ZZ>= ` M ) ) -> ( seq N ( + , F ) |` ( ZZ>= ` M ) ) = seq M ( + , F ) ) |
20 |
5 19
|
mpidan |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq N ( + , F ) |` ( ZZ>= ` M ) ) = seq M ( + , F ) ) |
21 |
20
|
breq1d |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( ( seq N ( + , F ) |` ( ZZ>= ` M ) ) ~~> C <-> seq M ( + , F ) ~~> C ) ) |
22 |
3
|
adantr |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> M e. ZZ ) |
23 |
|
seqex |
|- seq N ( + , F ) e. _V |
24 |
|
climres |
|- ( ( M e. ZZ /\ seq N ( + , F ) e. _V ) -> ( ( seq N ( + , F ) |` ( ZZ>= ` M ) ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
25 |
22 23 24
|
sylancl |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( ( seq N ( + , F ) |` ( ZZ>= ` M ) ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
26 |
21 25
|
bitr3d |
|- ( ( ph /\ M e. ( ZZ>= ` N ) ) -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |
27 |
|
uztric |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
28 |
3 4 27
|
syl2anc |
|- ( ph -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
29 |
16 26 28
|
mpjaodan |
|- ( ph -> ( seq M ( + , F ) ~~> C <-> seq N ( + , F ) ~~> C ) ) |