Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fsum1.1 | |- ( k = M -> A = B ) |
|
Assertion | sumsn | |- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsum1.1 | |- ( k = M -> A = B ) |
|
2 | nfcv | |- F/_ k B |
|
3 | 2 1 | sumsnf | |- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = B ) |