| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sumsnd.1 |  |-  ( ph -> F/_ k B ) | 
						
							| 2 |  | sumsnd.2 |  |-  F/ k ph | 
						
							| 3 |  | sumsnd.3 |  |-  ( ( ph /\ k = M ) -> A = B ) | 
						
							| 4 |  | sumsnd.4 |  |-  ( ph -> M e. V ) | 
						
							| 5 |  | sumsnd.5 |  |-  ( ph -> B e. CC ) | 
						
							| 6 |  | csbeq1a |  |-  ( k = m -> A = [_ m / k ]_ A ) | 
						
							| 7 |  | nfcv |  |-  F/_ m A | 
						
							| 8 |  | nfcsb1v |  |-  F/_ k [_ m / k ]_ A | 
						
							| 9 | 6 7 8 | cbvsum |  |-  sum_ k e. { M } A = sum_ m e. { M } [_ m / k ]_ A | 
						
							| 10 |  | csbeq1 |  |-  ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) | 
						
							| 11 |  | 1nn |  |-  1 e. NN | 
						
							| 12 | 11 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 13 |  | f1osng |  |-  ( ( 1 e. NN /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) | 
						
							| 14 | 11 4 13 | sylancr |  |-  ( ph -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) | 
						
							| 15 |  | 1z |  |-  1 e. ZZ | 
						
							| 16 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 17 |  | f1oeq2 |  |-  ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) | 
						
							| 18 | 15 16 17 | mp2b |  |-  ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) | 
						
							| 19 | 14 18 | sylibr |  |-  ( ph -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) | 
						
							| 20 |  | elsni |  |-  ( m e. { M } -> m = M ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ m e. { M } ) -> m = M ) | 
						
							| 22 | 21 | csbeq1d |  |-  ( ( ph /\ m e. { M } ) -> [_ m / k ]_ A = [_ M / k ]_ A ) | 
						
							| 23 | 2 1 4 3 | csbiedf |  |-  ( ph -> [_ M / k ]_ A = B ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ m e. { M } ) -> [_ M / k ]_ A = B ) | 
						
							| 25 | 5 | adantr |  |-  ( ( ph /\ m e. { M } ) -> B e. CC ) | 
						
							| 26 | 24 25 | eqeltrd |  |-  ( ( ph /\ m e. { M } ) -> [_ M / k ]_ A e. CC ) | 
						
							| 27 | 22 26 | eqeltrd |  |-  ( ( ph /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) | 
						
							| 28 | 23 | adantr |  |-  ( ( ph /\ n e. ( 1 ... 1 ) ) -> [_ M / k ]_ A = B ) | 
						
							| 29 |  | elfz1eq |  |-  ( n e. ( 1 ... 1 ) -> n = 1 ) | 
						
							| 30 | 29 | fveq2d |  |-  ( n e. ( 1 ... 1 ) -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) | 
						
							| 31 |  | fvsng |  |-  ( ( 1 e. NN /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) | 
						
							| 32 | 11 4 31 | sylancr |  |-  ( ph -> ( { <. 1 , M >. } ` 1 ) = M ) | 
						
							| 33 | 30 32 | sylan9eqr |  |-  ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , M >. } ` n ) = M ) | 
						
							| 34 | 33 | csbeq1d |  |-  ( ( ph /\ n e. ( 1 ... 1 ) ) -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ M / k ]_ A ) | 
						
							| 35 | 29 | fveq2d |  |-  ( n e. ( 1 ... 1 ) -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) | 
						
							| 36 |  | fvsng |  |-  ( ( 1 e. NN /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) | 
						
							| 37 | 11 5 36 | sylancr |  |-  ( ph -> ( { <. 1 , B >. } ` 1 ) = B ) | 
						
							| 38 | 35 37 | sylan9eqr |  |-  ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = B ) | 
						
							| 39 | 28 34 38 | 3eqtr4rd |  |-  ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) | 
						
							| 40 | 10 12 19 27 39 | fsum |  |-  ( ph -> sum_ m e. { M } [_ m / k ]_ A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) | 
						
							| 41 | 9 40 | eqtrid |  |-  ( ph -> sum_ k e. { M } A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) | 
						
							| 42 | 15 37 | seq1i |  |-  ( ph -> ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) = B ) | 
						
							| 43 | 41 42 | eqtrd |  |-  ( ph -> sum_ k e. { M } A = B ) |