| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumsnf.1 |
|- F/_ k B |
| 2 |
|
sumsnf.2 |
|- ( k = M -> A = B ) |
| 3 |
|
csbeq1a |
|- ( k = m -> A = [_ m / k ]_ A ) |
| 4 |
|
nfcv |
|- F/_ m A |
| 5 |
|
nfcsb1v |
|- F/_ k [_ m / k ]_ A |
| 6 |
3 4 5
|
cbvsum |
|- sum_ k e. { M } A = sum_ m e. { M } [_ m / k ]_ A |
| 7 |
|
csbeq1 |
|- ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 8 |
|
1nn |
|- 1 e. NN |
| 9 |
8
|
a1i |
|- ( ( M e. V /\ B e. CC ) -> 1 e. NN ) |
| 10 |
|
simpl |
|- ( ( M e. V /\ B e. CC ) -> M e. V ) |
| 11 |
|
f1osng |
|- ( ( 1 e. NN /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 12 |
8 10 11
|
sylancr |
|- ( ( M e. V /\ B e. CC ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 13 |
|
1z |
|- 1 e. ZZ |
| 14 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 15 |
|
f1oeq2 |
|- ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) |
| 16 |
13 14 15
|
mp2b |
|- ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 17 |
12 16
|
sylibr |
|- ( ( M e. V /\ B e. CC ) -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 18 |
|
elsni |
|- ( m e. { M } -> m = M ) |
| 19 |
18
|
adantl |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> m = M ) |
| 20 |
19
|
csbeq1d |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A = [_ M / k ]_ A ) |
| 21 |
1
|
a1i |
|- ( M e. V -> F/_ k B ) |
| 22 |
21 2
|
csbiegf |
|- ( M e. V -> [_ M / k ]_ A = B ) |
| 23 |
22
|
ad2antrr |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ M / k ]_ A = B ) |
| 24 |
|
simplr |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> B e. CC ) |
| 25 |
23 24
|
eqeltrd |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ M / k ]_ A e. CC ) |
| 26 |
20 25
|
eqeltrd |
|- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) |
| 27 |
22
|
ad2antrr |
|- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> [_ M / k ]_ A = B ) |
| 28 |
|
elfz1eq |
|- ( n e. ( 1 ... 1 ) -> n = 1 ) |
| 29 |
28
|
fveq2d |
|- ( n e. ( 1 ... 1 ) -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) |
| 30 |
|
fvsng |
|- ( ( 1 e. NN /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 31 |
8 10 30
|
sylancr |
|- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 32 |
29 31
|
sylan9eqr |
|- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , M >. } ` n ) = M ) |
| 33 |
32
|
csbeq1d |
|- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ M / k ]_ A ) |
| 34 |
28
|
fveq2d |
|- ( n e. ( 1 ... 1 ) -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) |
| 35 |
|
simpr |
|- ( ( M e. V /\ B e. CC ) -> B e. CC ) |
| 36 |
|
fvsng |
|- ( ( 1 e. NN /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 37 |
8 35 36
|
sylancr |
|- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 38 |
34 37
|
sylan9eqr |
|- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = B ) |
| 39 |
27 33 38
|
3eqtr4rd |
|- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 40 |
7 9 17 26 39
|
fsum |
|- ( ( M e. V /\ B e. CC ) -> sum_ m e. { M } [_ m / k ]_ A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 41 |
6 40
|
eqtrid |
|- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 42 |
13 37
|
seq1i |
|- ( ( M e. V /\ B e. CC ) -> ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) = B ) |
| 43 |
41 42
|
eqtrd |
|- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = B ) |