Metamath Proof Explorer


Theorem sumsns

Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014)

Ref Expression
Assertion sumsns
|- ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> sum_ k e. { M } A = [_ M / k ]_ A )

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ n A
2 nfcsb1v
 |-  F/_ k [_ n / k ]_ A
3 csbeq1a
 |-  ( k = n -> A = [_ n / k ]_ A )
4 1 2 3 cbvsumi
 |-  sum_ k e. { M } A = sum_ n e. { M } [_ n / k ]_ A
5 csbeq1
 |-  ( n = M -> [_ n / k ]_ A = [_ M / k ]_ A )
6 5 sumsn
 |-  ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> sum_ n e. { M } [_ n / k ]_ A = [_ M / k ]_ A )
7 4 6 syl5eq
 |-  ( ( M e. V /\ [_ M / k ]_ A e. CC ) -> sum_ k e. { M } A = [_ M / k ]_ A )