| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resqcl |
|- ( A e. RR -> ( A ^ 2 ) e. RR ) |
| 2 |
|
sqge0 |
|- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
| 3 |
1 2
|
jca |
|- ( A e. RR -> ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) |
| 4 |
|
resqcl |
|- ( B e. RR -> ( B ^ 2 ) e. RR ) |
| 5 |
|
sqge0 |
|- ( B e. RR -> 0 <_ ( B ^ 2 ) ) |
| 6 |
4 5
|
jca |
|- ( B e. RR -> ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) ) |
| 7 |
|
add20 |
|- ( ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) /\ ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 <-> ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) ) ) |
| 8 |
3 6 7
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 <-> ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) ) ) |
| 9 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 10 |
|
sqeq0 |
|- ( A e. CC -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
| 11 |
9 10
|
syl |
|- ( A e. RR -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
| 12 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 13 |
|
sqeq0 |
|- ( B e. CC -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
| 14 |
12 13
|
syl |
|- ( B e. RR -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
| 15 |
11 14
|
bi2anan9 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
| 16 |
8 15
|
bitr2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) ) |