Step |
Hyp |
Ref |
Expression |
1 |
|
resqcl |
|- ( A e. RR -> ( A ^ 2 ) e. RR ) |
2 |
|
sqge0 |
|- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
3 |
1 2
|
jca |
|- ( A e. RR -> ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) |
4 |
|
resqcl |
|- ( B e. RR -> ( B ^ 2 ) e. RR ) |
5 |
|
sqge0 |
|- ( B e. RR -> 0 <_ ( B ^ 2 ) ) |
6 |
4 5
|
jca |
|- ( B e. RR -> ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) ) |
7 |
|
add20 |
|- ( ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) /\ ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 <-> ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) ) ) |
8 |
3 6 7
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 <-> ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) ) ) |
9 |
|
recn |
|- ( A e. RR -> A e. CC ) |
10 |
|
sqeq0 |
|- ( A e. CC -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
11 |
9 10
|
syl |
|- ( A e. RR -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
12 |
|
recn |
|- ( B e. RR -> B e. CC ) |
13 |
|
sqeq0 |
|- ( B e. CC -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
14 |
12 13
|
syl |
|- ( B e. RR -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
15 |
11 14
|
bi2anan9 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
16 |
8 15
|
bitr2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) ) |