Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
2 |
|
simpr |
|- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> M e. ZZ ) |
3 |
|
simpl |
|- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> A C_ ( ZZ>= ` M ) ) |
4 |
|
c0ex |
|- 0 e. _V |
5 |
4
|
fvconst2 |
|- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) |
6 |
|
ifid |
|- if ( k e. A , 0 , 0 ) = 0 |
7 |
5 6
|
eqtr4di |
|- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = if ( k e. A , 0 , 0 ) ) |
8 |
7
|
adantl |
|- ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = if ( k e. A , 0 , 0 ) ) |
9 |
|
0cnd |
|- ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. A ) -> 0 e. CC ) |
10 |
1 2 3 8 9
|
zsum |
|- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> sum_ k e. A 0 = ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) ) |
11 |
|
fclim |
|- ~~> : dom ~~> --> CC |
12 |
|
ffun |
|- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
13 |
11 12
|
ax-mp |
|- Fun ~~> |
14 |
|
serclim0 |
|- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
15 |
14
|
adantl |
|- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
16 |
|
funbrfv |
|- ( Fun ~~> -> ( seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 -> ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) = 0 ) ) |
17 |
13 15 16
|
mpsyl |
|- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) = 0 ) |
18 |
10 17
|
eqtrd |
|- ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> sum_ k e. A 0 = 0 ) |
19 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
20 |
19
|
fdmi |
|- dom ZZ>= = ZZ |
21 |
20
|
eleq2i |
|- ( M e. dom ZZ>= <-> M e. ZZ ) |
22 |
|
ndmfv |
|- ( -. M e. dom ZZ>= -> ( ZZ>= ` M ) = (/) ) |
23 |
21 22
|
sylnbir |
|- ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) |
24 |
23
|
sseq2d |
|- ( -. M e. ZZ -> ( A C_ ( ZZ>= ` M ) <-> A C_ (/) ) ) |
25 |
24
|
biimpac |
|- ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> A C_ (/) ) |
26 |
|
ss0 |
|- ( A C_ (/) -> A = (/) ) |
27 |
|
sumeq1 |
|- ( A = (/) -> sum_ k e. A 0 = sum_ k e. (/) 0 ) |
28 |
|
sum0 |
|- sum_ k e. (/) 0 = 0 |
29 |
27 28
|
eqtrdi |
|- ( A = (/) -> sum_ k e. A 0 = 0 ) |
30 |
25 26 29
|
3syl |
|- ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> sum_ k e. A 0 = 0 ) |
31 |
18 30
|
pm2.61dan |
|- ( A C_ ( ZZ>= ` M ) -> sum_ k e. A 0 = 0 ) |
32 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
33 |
|
eqidd |
|- ( k = ( f ` n ) -> 0 = 0 ) |
34 |
|
simpl |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. NN ) |
35 |
|
simpr |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
36 |
|
0cnd |
|- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ k e. A ) -> 0 e. CC ) |
37 |
|
elfznn |
|- ( n e. ( 1 ... ( # ` A ) ) -> n e. NN ) |
38 |
4
|
fvconst2 |
|- ( n e. NN -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
39 |
37 38
|
syl |
|- ( n e. ( 1 ... ( # ` A ) ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
40 |
39
|
adantl |
|- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) |
41 |
33 34 35 36 40
|
fsum |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) ) |
42 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
43 |
42
|
ser0 |
|- ( ( # ` A ) e. NN -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) = 0 ) |
44 |
43
|
adantr |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) = 0 ) |
45 |
41 44
|
eqtrd |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = 0 ) |
46 |
45
|
ex |
|- ( ( # ` A ) e. NN -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A 0 = 0 ) ) |
47 |
46
|
exlimdv |
|- ( ( # ` A ) e. NN -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A 0 = 0 ) ) |
48 |
47
|
imp |
|- ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = 0 ) |
49 |
29 48
|
jaoi |
|- ( ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A 0 = 0 ) |
50 |
32 49
|
syl |
|- ( A e. Fin -> sum_ k e. A 0 = 0 ) |
51 |
31 50
|
jaoi |
|- ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |