| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( ZZ>= ` M ) = ( ZZ>= ` M ) | 
						
							| 2 |  | simpr |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> M e. ZZ ) | 
						
							| 3 |  | simpl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> A C_ ( ZZ>= ` M ) ) | 
						
							| 4 |  | c0ex |  |-  0 e. _V | 
						
							| 5 | 4 | fvconst2 |  |-  ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) | 
						
							| 6 |  | ifid |  |-  if ( k e. A , 0 , 0 ) = 0 | 
						
							| 7 | 5 6 | eqtr4di |  |-  ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = if ( k e. A , 0 , 0 ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = if ( k e. A , 0 , 0 ) ) | 
						
							| 9 |  | 0cnd |  |-  ( ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) /\ k e. A ) -> 0 e. CC ) | 
						
							| 10 | 1 2 3 8 9 | zsum |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> sum_ k e. A 0 = ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) ) | 
						
							| 11 |  | fclim |  |-  ~~> : dom ~~> --> CC | 
						
							| 12 |  | ffun |  |-  ( ~~> : dom ~~> --> CC -> Fun ~~> ) | 
						
							| 13 | 11 12 | ax-mp |  |-  Fun ~~> | 
						
							| 14 |  | serclim0 |  |-  ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) | 
						
							| 15 | 14 | adantl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) | 
						
							| 16 |  | funbrfv |  |-  ( Fun ~~> -> ( seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 -> ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) = 0 ) ) | 
						
							| 17 | 13 15 16 | mpsyl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> ( ~~> ` seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ) = 0 ) | 
						
							| 18 | 10 17 | eqtrd |  |-  ( ( A C_ ( ZZ>= ` M ) /\ M e. ZZ ) -> sum_ k e. A 0 = 0 ) | 
						
							| 19 |  | uzf |  |-  ZZ>= : ZZ --> ~P ZZ | 
						
							| 20 | 19 | fdmi |  |-  dom ZZ>= = ZZ | 
						
							| 21 | 20 | eleq2i |  |-  ( M e. dom ZZ>= <-> M e. ZZ ) | 
						
							| 22 |  | ndmfv |  |-  ( -. M e. dom ZZ>= -> ( ZZ>= ` M ) = (/) ) | 
						
							| 23 | 21 22 | sylnbir |  |-  ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) ) | 
						
							| 24 | 23 | sseq2d |  |-  ( -. M e. ZZ -> ( A C_ ( ZZ>= ` M ) <-> A C_ (/) ) ) | 
						
							| 25 | 24 | biimpac |  |-  ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> A C_ (/) ) | 
						
							| 26 |  | ss0 |  |-  ( A C_ (/) -> A = (/) ) | 
						
							| 27 |  | sumeq1 |  |-  ( A = (/) -> sum_ k e. A 0 = sum_ k e. (/) 0 ) | 
						
							| 28 |  | sum0 |  |-  sum_ k e. (/) 0 = 0 | 
						
							| 29 | 27 28 | eqtrdi |  |-  ( A = (/) -> sum_ k e. A 0 = 0 ) | 
						
							| 30 | 25 26 29 | 3syl |  |-  ( ( A C_ ( ZZ>= ` M ) /\ -. M e. ZZ ) -> sum_ k e. A 0 = 0 ) | 
						
							| 31 | 18 30 | pm2.61dan |  |-  ( A C_ ( ZZ>= ` M ) -> sum_ k e. A 0 = 0 ) | 
						
							| 32 |  | fz1f1o |  |-  ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) | 
						
							| 33 |  | eqidd |  |-  ( k = ( f ` n ) -> 0 = 0 ) | 
						
							| 34 |  | simpl |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. NN ) | 
						
							| 35 |  | simpr |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) | 
						
							| 36 |  | 0cnd |  |-  ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ k e. A ) -> 0 e. CC ) | 
						
							| 37 |  | elfznn |  |-  ( n e. ( 1 ... ( # ` A ) ) -> n e. NN ) | 
						
							| 38 | 4 | fvconst2 |  |-  ( n e. NN -> ( ( NN X. { 0 } ) ` n ) = 0 ) | 
						
							| 39 | 37 38 | syl |  |-  ( n e. ( 1 ... ( # ` A ) ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( NN X. { 0 } ) ` n ) = 0 ) | 
						
							| 41 | 33 34 35 36 40 | fsum |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) ) | 
						
							| 42 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 43 | 42 | ser0 |  |-  ( ( # ` A ) e. NN -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) = 0 ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( + , ( NN X. { 0 } ) ) ` ( # ` A ) ) = 0 ) | 
						
							| 45 | 41 44 | eqtrd |  |-  ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = 0 ) | 
						
							| 46 | 45 | ex |  |-  ( ( # ` A ) e. NN -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A 0 = 0 ) ) | 
						
							| 47 | 46 | exlimdv |  |-  ( ( # ` A ) e. NN -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> sum_ k e. A 0 = 0 ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> sum_ k e. A 0 = 0 ) | 
						
							| 49 | 29 48 | jaoi |  |-  ( ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A 0 = 0 ) | 
						
							| 50 | 32 49 | syl |  |-  ( A e. Fin -> sum_ k e. A 0 = 0 ) | 
						
							| 51 | 31 50 | jaoi |  |-  ( ( A C_ ( ZZ>= ` M ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |