| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supadd.a1 |
|- ( ph -> A C_ RR ) |
| 2 |
|
supadd.a2 |
|- ( ph -> A =/= (/) ) |
| 3 |
|
supadd.a3 |
|- ( ph -> E. x e. RR A. y e. A y <_ x ) |
| 4 |
|
supadd.b1 |
|- ( ph -> B C_ RR ) |
| 5 |
|
supadd.b2 |
|- ( ph -> B =/= (/) ) |
| 6 |
|
supadd.b3 |
|- ( ph -> E. x e. RR A. y e. B y <_ x ) |
| 7 |
|
supadd.c |
|- C = { z | E. v e. A E. b e. B z = ( v + b ) } |
| 8 |
4 5 6
|
suprcld |
|- ( ph -> sup ( B , RR , < ) e. RR ) |
| 9 |
|
eqid |
|- { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } = { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } |
| 10 |
1 2 3 8 9
|
supaddc |
|- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } , RR , < ) ) |
| 11 |
1
|
sselda |
|- ( ( ph /\ a e. A ) -> a e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ph /\ a e. A ) -> a e. CC ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ a e. A ) -> sup ( B , RR , < ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ( ph /\ a e. A ) -> sup ( B , RR , < ) e. CC ) |
| 15 |
12 14
|
addcomd |
|- ( ( ph /\ a e. A ) -> ( a + sup ( B , RR , < ) ) = ( sup ( B , RR , < ) + a ) ) |
| 16 |
15
|
eqeq2d |
|- ( ( ph /\ a e. A ) -> ( z = ( a + sup ( B , RR , < ) ) <-> z = ( sup ( B , RR , < ) + a ) ) ) |
| 17 |
16
|
rexbidva |
|- ( ph -> ( E. a e. A z = ( a + sup ( B , RR , < ) ) <-> E. a e. A z = ( sup ( B , RR , < ) + a ) ) ) |
| 18 |
17
|
abbidv |
|- ( ph -> { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } = { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } ) |
| 19 |
18
|
supeq1d |
|- ( ph -> sup ( { z | E. a e. A z = ( a + sup ( B , RR , < ) ) } , RR , < ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) ) |
| 20 |
10 19
|
eqtrd |
|- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) ) |
| 21 |
|
vex |
|- w e. _V |
| 22 |
|
eqeq1 |
|- ( z = w -> ( z = ( sup ( B , RR , < ) + a ) <-> w = ( sup ( B , RR , < ) + a ) ) ) |
| 23 |
22
|
rexbidv |
|- ( z = w -> ( E. a e. A z = ( sup ( B , RR , < ) + a ) <-> E. a e. A w = ( sup ( B , RR , < ) + a ) ) ) |
| 24 |
21 23
|
elab |
|- ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } <-> E. a e. A w = ( sup ( B , RR , < ) + a ) ) |
| 25 |
4
|
adantr |
|- ( ( ph /\ a e. A ) -> B C_ RR ) |
| 26 |
5
|
adantr |
|- ( ( ph /\ a e. A ) -> B =/= (/) ) |
| 27 |
6
|
adantr |
|- ( ( ph /\ a e. A ) -> E. x e. RR A. y e. B y <_ x ) |
| 28 |
|
eqid |
|- { z | E. b e. B z = ( b + a ) } = { z | E. b e. B z = ( b + a ) } |
| 29 |
25 26 27 11 28
|
supaddc |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) = sup ( { z | E. b e. B z = ( b + a ) } , RR , < ) ) |
| 30 |
4
|
sselda |
|- ( ( ph /\ b e. B ) -> b e. RR ) |
| 31 |
30
|
adantlr |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> b e. RR ) |
| 32 |
31
|
recnd |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> b e. CC ) |
| 33 |
11
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> a e. RR ) |
| 34 |
33
|
recnd |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> a e. CC ) |
| 35 |
32 34
|
addcomd |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( b + a ) = ( a + b ) ) |
| 36 |
35
|
eqeq2d |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( z = ( b + a ) <-> z = ( a + b ) ) ) |
| 37 |
36
|
rexbidva |
|- ( ( ph /\ a e. A ) -> ( E. b e. B z = ( b + a ) <-> E. b e. B z = ( a + b ) ) ) |
| 38 |
37
|
abbidv |
|- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( b + a ) } = { z | E. b e. B z = ( a + b ) } ) |
| 39 |
38
|
supeq1d |
|- ( ( ph /\ a e. A ) -> sup ( { z | E. b e. B z = ( b + a ) } , RR , < ) = sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) ) |
| 40 |
29 39
|
eqtrd |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) = sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) ) |
| 41 |
|
eqeq1 |
|- ( z = w -> ( z = ( a + b ) <-> w = ( a + b ) ) ) |
| 42 |
41
|
rexbidv |
|- ( z = w -> ( E. b e. B z = ( a + b ) <-> E. b e. B w = ( a + b ) ) ) |
| 43 |
21 42
|
elab |
|- ( w e. { z | E. b e. B z = ( a + b ) } <-> E. b e. B w = ( a + b ) ) |
| 44 |
|
rspe |
|- ( ( a e. A /\ E. b e. B w = ( a + b ) ) -> E. a e. A E. b e. B w = ( a + b ) ) |
| 45 |
|
oveq1 |
|- ( v = a -> ( v + b ) = ( a + b ) ) |
| 46 |
45
|
eqeq2d |
|- ( v = a -> ( z = ( v + b ) <-> z = ( a + b ) ) ) |
| 47 |
46
|
rexbidv |
|- ( v = a -> ( E. b e. B z = ( v + b ) <-> E. b e. B z = ( a + b ) ) ) |
| 48 |
47
|
cbvrexvw |
|- ( E. v e. A E. b e. B z = ( v + b ) <-> E. a e. A E. b e. B z = ( a + b ) ) |
| 49 |
41
|
2rexbidv |
|- ( z = w -> ( E. a e. A E. b e. B z = ( a + b ) <-> E. a e. A E. b e. B w = ( a + b ) ) ) |
| 50 |
48 49
|
bitrid |
|- ( z = w -> ( E. v e. A E. b e. B z = ( v + b ) <-> E. a e. A E. b e. B w = ( a + b ) ) ) |
| 51 |
21 50 7
|
elab2 |
|- ( w e. C <-> E. a e. A E. b e. B w = ( a + b ) ) |
| 52 |
44 51
|
sylibr |
|- ( ( a e. A /\ E. b e. B w = ( a + b ) ) -> w e. C ) |
| 53 |
52
|
ex |
|- ( a e. A -> ( E. b e. B w = ( a + b ) -> w e. C ) ) |
| 54 |
1
|
sseld |
|- ( ph -> ( a e. A -> a e. RR ) ) |
| 55 |
4
|
sseld |
|- ( ph -> ( b e. B -> b e. RR ) ) |
| 56 |
54 55
|
anim12d |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( a e. RR /\ b e. RR ) ) ) |
| 57 |
|
readdcl |
|- ( ( a e. RR /\ b e. RR ) -> ( a + b ) e. RR ) |
| 58 |
56 57
|
syl6 |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( a + b ) e. RR ) ) |
| 59 |
|
eleq1a |
|- ( ( a + b ) e. RR -> ( w = ( a + b ) -> w e. RR ) ) |
| 60 |
58 59
|
syl6 |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( w = ( a + b ) -> w e. RR ) ) ) |
| 61 |
60
|
rexlimdvv |
|- ( ph -> ( E. a e. A E. b e. B w = ( a + b ) -> w e. RR ) ) |
| 62 |
51 61
|
biimtrid |
|- ( ph -> ( w e. C -> w e. RR ) ) |
| 63 |
62
|
ssrdv |
|- ( ph -> C C_ RR ) |
| 64 |
|
ovex |
|- ( a + b ) e. _V |
| 65 |
64
|
isseti |
|- E. w w = ( a + b ) |
| 66 |
65
|
rgenw |
|- A. b e. B E. w w = ( a + b ) |
| 67 |
|
r19.2z |
|- ( ( B =/= (/) /\ A. b e. B E. w w = ( a + b ) ) -> E. b e. B E. w w = ( a + b ) ) |
| 68 |
5 66 67
|
sylancl |
|- ( ph -> E. b e. B E. w w = ( a + b ) ) |
| 69 |
|
rexcom4 |
|- ( E. b e. B E. w w = ( a + b ) <-> E. w E. b e. B w = ( a + b ) ) |
| 70 |
68 69
|
sylib |
|- ( ph -> E. w E. b e. B w = ( a + b ) ) |
| 71 |
70
|
ralrimivw |
|- ( ph -> A. a e. A E. w E. b e. B w = ( a + b ) ) |
| 72 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. a e. A E. w E. b e. B w = ( a + b ) ) -> E. a e. A E. w E. b e. B w = ( a + b ) ) |
| 73 |
2 71 72
|
syl2anc |
|- ( ph -> E. a e. A E. w E. b e. B w = ( a + b ) ) |
| 74 |
|
rexcom4 |
|- ( E. a e. A E. w E. b e. B w = ( a + b ) <-> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 75 |
73 74
|
sylib |
|- ( ph -> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 76 |
|
n0 |
|- ( C =/= (/) <-> E. w w e. C ) |
| 77 |
51
|
exbii |
|- ( E. w w e. C <-> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 78 |
76 77
|
bitri |
|- ( C =/= (/) <-> E. w E. a e. A E. b e. B w = ( a + b ) ) |
| 79 |
75 78
|
sylibr |
|- ( ph -> C =/= (/) ) |
| 80 |
1 2 3
|
suprcld |
|- ( ph -> sup ( A , RR , < ) e. RR ) |
| 81 |
80 8
|
readdcld |
|- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) e. RR ) |
| 82 |
11
|
adantrr |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> a e. RR ) |
| 83 |
30
|
adantrl |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> b e. RR ) |
| 84 |
80
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> sup ( A , RR , < ) e. RR ) |
| 85 |
8
|
adantr |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> sup ( B , RR , < ) e. RR ) |
| 86 |
1 2 3
|
3jca |
|- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 87 |
|
suprub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
| 88 |
86 87
|
sylan |
|- ( ( ph /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
| 89 |
88
|
adantrr |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> a <_ sup ( A , RR , < ) ) |
| 90 |
4 5 6
|
3jca |
|- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 91 |
|
suprub |
|- ( ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 92 |
90 91
|
sylan |
|- ( ( ph /\ b e. B ) -> b <_ sup ( B , RR , < ) ) |
| 93 |
92
|
adantrl |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> b <_ sup ( B , RR , < ) ) |
| 94 |
82 83 84 85 89 93
|
le2addd |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) |
| 95 |
94
|
ex |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 96 |
|
breq1 |
|- ( w = ( a + b ) -> ( w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <-> ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 97 |
96
|
biimprcd |
|- ( ( a + b ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) -> ( w = ( a + b ) -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 98 |
95 97
|
syl6 |
|- ( ph -> ( ( a e. A /\ b e. B ) -> ( w = ( a + b ) -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) ) |
| 99 |
98
|
rexlimdvv |
|- ( ph -> ( E. a e. A E. b e. B w = ( a + b ) -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 100 |
51 99
|
biimtrid |
|- ( ph -> ( w e. C -> w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 101 |
100
|
ralrimiv |
|- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) |
| 102 |
|
brralrspcev |
|- ( ( ( sup ( A , RR , < ) + sup ( B , RR , < ) ) e. RR /\ A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) -> E. x e. RR A. w e. C w <_ x ) |
| 103 |
81 101 102
|
syl2anc |
|- ( ph -> E. x e. RR A. w e. C w <_ x ) |
| 104 |
|
suprub |
|- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 105 |
104
|
ex |
|- ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 106 |
63 79 103 105
|
syl3anc |
|- ( ph -> ( w e. C -> w <_ sup ( C , RR , < ) ) ) |
| 107 |
53 106
|
sylan9r |
|- ( ( ph /\ a e. A ) -> ( E. b e. B w = ( a + b ) -> w <_ sup ( C , RR , < ) ) ) |
| 108 |
43 107
|
biimtrid |
|- ( ( ph /\ a e. A ) -> ( w e. { z | E. b e. B z = ( a + b ) } -> w <_ sup ( C , RR , < ) ) ) |
| 109 |
108
|
ralrimiv |
|- ( ( ph /\ a e. A ) -> A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) |
| 110 |
33 31
|
readdcld |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( a + b ) e. RR ) |
| 111 |
|
eleq1a |
|- ( ( a + b ) e. RR -> ( z = ( a + b ) -> z e. RR ) ) |
| 112 |
110 111
|
syl |
|- ( ( ( ph /\ a e. A ) /\ b e. B ) -> ( z = ( a + b ) -> z e. RR ) ) |
| 113 |
112
|
rexlimdva |
|- ( ( ph /\ a e. A ) -> ( E. b e. B z = ( a + b ) -> z e. RR ) ) |
| 114 |
113
|
abssdv |
|- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a + b ) } C_ RR ) |
| 115 |
64
|
isseti |
|- E. z z = ( a + b ) |
| 116 |
115
|
rgenw |
|- A. b e. B E. z z = ( a + b ) |
| 117 |
|
r19.2z |
|- ( ( B =/= (/) /\ A. b e. B E. z z = ( a + b ) ) -> E. b e. B E. z z = ( a + b ) ) |
| 118 |
5 116 117
|
sylancl |
|- ( ph -> E. b e. B E. z z = ( a + b ) ) |
| 119 |
|
rexcom4 |
|- ( E. b e. B E. z z = ( a + b ) <-> E. z E. b e. B z = ( a + b ) ) |
| 120 |
118 119
|
sylib |
|- ( ph -> E. z E. b e. B z = ( a + b ) ) |
| 121 |
|
abn0 |
|- ( { z | E. b e. B z = ( a + b ) } =/= (/) <-> E. z E. b e. B z = ( a + b ) ) |
| 122 |
120 121
|
sylibr |
|- ( ph -> { z | E. b e. B z = ( a + b ) } =/= (/) ) |
| 123 |
122
|
adantr |
|- ( ( ph /\ a e. A ) -> { z | E. b e. B z = ( a + b ) } =/= (/) ) |
| 124 |
63 79 103
|
suprcld |
|- ( ph -> sup ( C , RR , < ) e. RR ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ a e. A ) -> sup ( C , RR , < ) e. RR ) |
| 126 |
|
brralrspcev |
|- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a + b ) } w <_ x ) |
| 127 |
125 109 126
|
syl2anc |
|- ( ( ph /\ a e. A ) -> E. x e. RR A. w e. { z | E. b e. B z = ( a + b ) } w <_ x ) |
| 128 |
|
suprleub |
|- ( ( ( { z | E. b e. B z = ( a + b ) } C_ RR /\ { z | E. b e. B z = ( a + b ) } =/= (/) /\ E. x e. RR A. w e. { z | E. b e. B z = ( a + b ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) ) |
| 129 |
114 123 127 125 128
|
syl31anc |
|- ( ( ph /\ a e. A ) -> ( sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. b e. B z = ( a + b ) } w <_ sup ( C , RR , < ) ) ) |
| 130 |
109 129
|
mpbird |
|- ( ( ph /\ a e. A ) -> sup ( { z | E. b e. B z = ( a + b ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 131 |
40 130
|
eqbrtrd |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) <_ sup ( C , RR , < ) ) |
| 132 |
|
breq1 |
|- ( w = ( sup ( B , RR , < ) + a ) -> ( w <_ sup ( C , RR , < ) <-> ( sup ( B , RR , < ) + a ) <_ sup ( C , RR , < ) ) ) |
| 133 |
131 132
|
syl5ibrcom |
|- ( ( ph /\ a e. A ) -> ( w = ( sup ( B , RR , < ) + a ) -> w <_ sup ( C , RR , < ) ) ) |
| 134 |
133
|
rexlimdva |
|- ( ph -> ( E. a e. A w = ( sup ( B , RR , < ) + a ) -> w <_ sup ( C , RR , < ) ) ) |
| 135 |
24 134
|
biimtrid |
|- ( ph -> ( w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } -> w <_ sup ( C , RR , < ) ) ) |
| 136 |
135
|
ralrimiv |
|- ( ph -> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) |
| 137 |
13 11
|
readdcld |
|- ( ( ph /\ a e. A ) -> ( sup ( B , RR , < ) + a ) e. RR ) |
| 138 |
|
eleq1a |
|- ( ( sup ( B , RR , < ) + a ) e. RR -> ( z = ( sup ( B , RR , < ) + a ) -> z e. RR ) ) |
| 139 |
137 138
|
syl |
|- ( ( ph /\ a e. A ) -> ( z = ( sup ( B , RR , < ) + a ) -> z e. RR ) ) |
| 140 |
139
|
rexlimdva |
|- ( ph -> ( E. a e. A z = ( sup ( B , RR , < ) + a ) -> z e. RR ) ) |
| 141 |
140
|
abssdv |
|- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } C_ RR ) |
| 142 |
|
ovex |
|- ( sup ( B , RR , < ) + a ) e. _V |
| 143 |
142
|
isseti |
|- E. z z = ( sup ( B , RR , < ) + a ) |
| 144 |
143
|
rgenw |
|- A. a e. A E. z z = ( sup ( B , RR , < ) + a ) |
| 145 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. a e. A E. z z = ( sup ( B , RR , < ) + a ) ) -> E. a e. A E. z z = ( sup ( B , RR , < ) + a ) ) |
| 146 |
2 144 145
|
sylancl |
|- ( ph -> E. a e. A E. z z = ( sup ( B , RR , < ) + a ) ) |
| 147 |
|
rexcom4 |
|- ( E. a e. A E. z z = ( sup ( B , RR , < ) + a ) <-> E. z E. a e. A z = ( sup ( B , RR , < ) + a ) ) |
| 148 |
146 147
|
sylib |
|- ( ph -> E. z E. a e. A z = ( sup ( B , RR , < ) + a ) ) |
| 149 |
|
abn0 |
|- ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } =/= (/) <-> E. z E. a e. A z = ( sup ( B , RR , < ) + a ) ) |
| 150 |
148 149
|
sylibr |
|- ( ph -> { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } =/= (/) ) |
| 151 |
|
brralrspcev |
|- ( ( sup ( C , RR , < ) e. RR /\ A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ x ) |
| 152 |
124 136 151
|
syl2anc |
|- ( ph -> E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ x ) |
| 153 |
|
suprleub |
|- ( ( ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } C_ RR /\ { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } =/= (/) /\ E. x e. RR A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ x ) /\ sup ( C , RR , < ) e. RR ) -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) ) |
| 154 |
141 150 152 124 153
|
syl31anc |
|- ( ph -> ( sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) <_ sup ( C , RR , < ) <-> A. w e. { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } w <_ sup ( C , RR , < ) ) ) |
| 155 |
136 154
|
mpbird |
|- ( ph -> sup ( { z | E. a e. A z = ( sup ( B , RR , < ) + a ) } , RR , < ) <_ sup ( C , RR , < ) ) |
| 156 |
20 155
|
eqbrtrd |
|- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <_ sup ( C , RR , < ) ) |
| 157 |
|
suprleub |
|- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) e. RR ) -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 158 |
63 79 103 81 157
|
syl31anc |
|- ( ph -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) |
| 159 |
101 158
|
mpbird |
|- ( ph -> sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) |
| 160 |
81 124
|
letri3d |
|- ( ph -> ( ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( C , RR , < ) <-> ( ( sup ( A , RR , < ) + sup ( B , RR , < ) ) <_ sup ( C , RR , < ) /\ sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + sup ( B , RR , < ) ) ) ) ) |
| 161 |
156 159 160
|
mpbir2and |
|- ( ph -> ( sup ( A , RR , < ) + sup ( B , RR , < ) ) = sup ( C , RR , < ) ) |