Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | supeq1d.1 | |- ( ph -> B = C ) |
|
| Assertion | supeq1d | |- ( ph -> sup ( B , A , R ) = sup ( C , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 | |- ( ph -> B = C ) |
|
| 2 | supeq1 | |- ( B = C -> sup ( B , A , R ) = sup ( C , A , R ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> sup ( B , A , R ) = sup ( C , A , R ) ) |