Metamath Proof Explorer


Theorem supeq1d

Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis supeq1d.1
|- ( ph -> B = C )
Assertion supeq1d
|- ( ph -> sup ( B , A , R ) = sup ( C , A , R ) )

Proof

Step Hyp Ref Expression
1 supeq1d.1
 |-  ( ph -> B = C )
2 supeq1
 |-  ( B = C -> sup ( B , A , R ) = sup ( C , A , R ) )
3 1 2 syl
 |-  ( ph -> sup ( B , A , R ) = sup ( C , A , R ) )