Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supeq1d.1 | |- ( ph -> B = C ) |
|
Assertion | supeq1d | |- ( ph -> sup ( B , A , R ) = sup ( C , A , R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1d.1 | |- ( ph -> B = C ) |
|
2 | supeq1 | |- ( B = C -> sup ( B , A , R ) = sup ( C , A , R ) ) |
|
3 | 1 2 | syl | |- ( ph -> sup ( B , A , R ) = sup ( C , A , R ) ) |