Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | supeq1i.1 | |- B = C |
|
Assertion | supeq1i | |- sup ( B , A , R ) = sup ( C , A , R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1i.1 | |- B = C |
|
2 | supeq1 | |- ( B = C -> sup ( B , A , R ) = sup ( C , A , R ) ) |
|
3 | 1 2 | ax-mp | |- sup ( B , A , R ) = sup ( C , A , R ) |