Metamath Proof Explorer


Theorem supex

Description: A supremum is a set. (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis supex.1
|- R Or A
Assertion supex
|- sup ( B , A , R ) e. _V

Proof

Step Hyp Ref Expression
1 supex.1
 |-  R Or A
2 id
 |-  ( R Or A -> R Or A )
3 2 supexd
 |-  ( R Or A -> sup ( B , A , R ) e. _V )
4 1 3 ax-mp
 |-  sup ( B , A , R ) e. _V