Step |
Hyp |
Ref |
Expression |
1 |
|
sseq2 |
|- ( x = y -> ( B C_ x <-> B C_ y ) ) |
2 |
1
|
elrab |
|- ( y e. { x e. ~P A | B C_ x } <-> ( y e. ~P A /\ B C_ y ) ) |
3 |
|
velpw |
|- ( y e. ~P A <-> y C_ A ) |
4 |
3
|
anbi1i |
|- ( ( y e. ~P A /\ B C_ y ) <-> ( y C_ A /\ B C_ y ) ) |
5 |
2 4
|
bitri |
|- ( y e. { x e. ~P A | B C_ x } <-> ( y C_ A /\ B C_ y ) ) |
6 |
5
|
a1i |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> ( y e. { x e. ~P A | B C_ x } <-> ( y C_ A /\ B C_ y ) ) ) |
7 |
|
simp1 |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> A e. V ) |
8 |
|
simp2 |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> B C_ A ) |
9 |
|
sseq2 |
|- ( y = A -> ( B C_ y <-> B C_ A ) ) |
10 |
9
|
sbcieg |
|- ( A e. V -> ( [. A / y ]. B C_ y <-> B C_ A ) ) |
11 |
7 10
|
syl |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> ( [. A / y ]. B C_ y <-> B C_ A ) ) |
12 |
8 11
|
mpbird |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> [. A / y ]. B C_ y ) |
13 |
|
ss0 |
|- ( B C_ (/) -> B = (/) ) |
14 |
13
|
necon3ai |
|- ( B =/= (/) -> -. B C_ (/) ) |
15 |
14
|
3ad2ant3 |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> -. B C_ (/) ) |
16 |
|
0ex |
|- (/) e. _V |
17 |
|
sseq2 |
|- ( y = (/) -> ( B C_ y <-> B C_ (/) ) ) |
18 |
16 17
|
sbcie |
|- ( [. (/) / y ]. B C_ y <-> B C_ (/) ) |
19 |
15 18
|
sylnibr |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> -. [. (/) / y ]. B C_ y ) |
20 |
|
sstr |
|- ( ( B C_ w /\ w C_ z ) -> B C_ z ) |
21 |
20
|
expcom |
|- ( w C_ z -> ( B C_ w -> B C_ z ) ) |
22 |
|
vex |
|- w e. _V |
23 |
|
sseq2 |
|- ( y = w -> ( B C_ y <-> B C_ w ) ) |
24 |
22 23
|
sbcie |
|- ( [. w / y ]. B C_ y <-> B C_ w ) |
25 |
|
vex |
|- z e. _V |
26 |
|
sseq2 |
|- ( y = z -> ( B C_ y <-> B C_ z ) ) |
27 |
25 26
|
sbcie |
|- ( [. z / y ]. B C_ y <-> B C_ z ) |
28 |
21 24 27
|
3imtr4g |
|- ( w C_ z -> ( [. w / y ]. B C_ y -> [. z / y ]. B C_ y ) ) |
29 |
28
|
3ad2ant3 |
|- ( ( ( A e. V /\ B C_ A /\ B =/= (/) ) /\ z C_ A /\ w C_ z ) -> ( [. w / y ]. B C_ y -> [. z / y ]. B C_ y ) ) |
30 |
|
ssin |
|- ( ( B C_ z /\ B C_ w ) <-> B C_ ( z i^i w ) ) |
31 |
30
|
biimpi |
|- ( ( B C_ z /\ B C_ w ) -> B C_ ( z i^i w ) ) |
32 |
27 24 31
|
syl2anb |
|- ( ( [. z / y ]. B C_ y /\ [. w / y ]. B C_ y ) -> B C_ ( z i^i w ) ) |
33 |
25
|
inex1 |
|- ( z i^i w ) e. _V |
34 |
|
sseq2 |
|- ( y = ( z i^i w ) -> ( B C_ y <-> B C_ ( z i^i w ) ) ) |
35 |
33 34
|
sbcie |
|- ( [. ( z i^i w ) / y ]. B C_ y <-> B C_ ( z i^i w ) ) |
36 |
32 35
|
sylibr |
|- ( ( [. z / y ]. B C_ y /\ [. w / y ]. B C_ y ) -> [. ( z i^i w ) / y ]. B C_ y ) |
37 |
36
|
a1i |
|- ( ( ( A e. V /\ B C_ A /\ B =/= (/) ) /\ z C_ A /\ w C_ A ) -> ( ( [. z / y ]. B C_ y /\ [. w / y ]. B C_ y ) -> [. ( z i^i w ) / y ]. B C_ y ) ) |
38 |
6 7 12 19 29 37
|
isfild |
|- ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> { x e. ~P A | B C_ x } e. ( Fil ` A ) ) |