| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseq2 |  |-  ( x = y -> ( B C_ x <-> B C_ y ) ) | 
						
							| 2 | 1 | elrab |  |-  ( y e. { x e. ~P A | B C_ x } <-> ( y e. ~P A /\ B C_ y ) ) | 
						
							| 3 |  | velpw |  |-  ( y e. ~P A <-> y C_ A ) | 
						
							| 4 | 3 | anbi1i |  |-  ( ( y e. ~P A /\ B C_ y ) <-> ( y C_ A /\ B C_ y ) ) | 
						
							| 5 | 2 4 | bitri |  |-  ( y e. { x e. ~P A | B C_ x } <-> ( y C_ A /\ B C_ y ) ) | 
						
							| 6 | 5 | a1i |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> ( y e. { x e. ~P A | B C_ x } <-> ( y C_ A /\ B C_ y ) ) ) | 
						
							| 7 |  | simp1 |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> A e. V ) | 
						
							| 8 |  | simp2 |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> B C_ A ) | 
						
							| 9 |  | sseq2 |  |-  ( y = A -> ( B C_ y <-> B C_ A ) ) | 
						
							| 10 | 9 | sbcieg |  |-  ( A e. V -> ( [. A / y ]. B C_ y <-> B C_ A ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> ( [. A / y ]. B C_ y <-> B C_ A ) ) | 
						
							| 12 | 8 11 | mpbird |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> [. A / y ]. B C_ y ) | 
						
							| 13 |  | ss0 |  |-  ( B C_ (/) -> B = (/) ) | 
						
							| 14 | 13 | necon3ai |  |-  ( B =/= (/) -> -. B C_ (/) ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> -. B C_ (/) ) | 
						
							| 16 |  | 0ex |  |-  (/) e. _V | 
						
							| 17 |  | sseq2 |  |-  ( y = (/) -> ( B C_ y <-> B C_ (/) ) ) | 
						
							| 18 | 16 17 | sbcie |  |-  ( [. (/) / y ]. B C_ y <-> B C_ (/) ) | 
						
							| 19 | 15 18 | sylnibr |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> -. [. (/) / y ]. B C_ y ) | 
						
							| 20 |  | sstr |  |-  ( ( B C_ w /\ w C_ z ) -> B C_ z ) | 
						
							| 21 | 20 | expcom |  |-  ( w C_ z -> ( B C_ w -> B C_ z ) ) | 
						
							| 22 |  | vex |  |-  w e. _V | 
						
							| 23 |  | sseq2 |  |-  ( y = w -> ( B C_ y <-> B C_ w ) ) | 
						
							| 24 | 22 23 | sbcie |  |-  ( [. w / y ]. B C_ y <-> B C_ w ) | 
						
							| 25 |  | vex |  |-  z e. _V | 
						
							| 26 |  | sseq2 |  |-  ( y = z -> ( B C_ y <-> B C_ z ) ) | 
						
							| 27 | 25 26 | sbcie |  |-  ( [. z / y ]. B C_ y <-> B C_ z ) | 
						
							| 28 | 21 24 27 | 3imtr4g |  |-  ( w C_ z -> ( [. w / y ]. B C_ y -> [. z / y ]. B C_ y ) ) | 
						
							| 29 | 28 | 3ad2ant3 |  |-  ( ( ( A e. V /\ B C_ A /\ B =/= (/) ) /\ z C_ A /\ w C_ z ) -> ( [. w / y ]. B C_ y -> [. z / y ]. B C_ y ) ) | 
						
							| 30 |  | ssin |  |-  ( ( B C_ z /\ B C_ w ) <-> B C_ ( z i^i w ) ) | 
						
							| 31 | 30 | biimpi |  |-  ( ( B C_ z /\ B C_ w ) -> B C_ ( z i^i w ) ) | 
						
							| 32 | 27 24 31 | syl2anb |  |-  ( ( [. z / y ]. B C_ y /\ [. w / y ]. B C_ y ) -> B C_ ( z i^i w ) ) | 
						
							| 33 | 25 | inex1 |  |-  ( z i^i w ) e. _V | 
						
							| 34 |  | sseq2 |  |-  ( y = ( z i^i w ) -> ( B C_ y <-> B C_ ( z i^i w ) ) ) | 
						
							| 35 | 33 34 | sbcie |  |-  ( [. ( z i^i w ) / y ]. B C_ y <-> B C_ ( z i^i w ) ) | 
						
							| 36 | 32 35 | sylibr |  |-  ( ( [. z / y ]. B C_ y /\ [. w / y ]. B C_ y ) -> [. ( z i^i w ) / y ]. B C_ y ) | 
						
							| 37 | 36 | a1i |  |-  ( ( ( A e. V /\ B C_ A /\ B =/= (/) ) /\ z C_ A /\ w C_ A ) -> ( ( [. z / y ]. B C_ y /\ [. w / y ]. B C_ y ) -> [. ( z i^i w ) / y ]. B C_ y ) ) | 
						
							| 38 | 6 7 12 19 29 37 | isfild |  |-  ( ( A e. V /\ B C_ A /\ B =/= (/) ) -> { x e. ~P A | B C_ x } e. ( Fil ` A ) ) |