| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supfirege.1 |  |-  ( ph -> B C_ RR ) | 
						
							| 2 |  | supfirege.2 |  |-  ( ph -> B e. Fin ) | 
						
							| 3 |  | supfirege.3 |  |-  ( ph -> C e. B ) | 
						
							| 4 |  | supfirege.4 |  |-  ( ph -> S = sup ( B , RR , < ) ) | 
						
							| 5 |  | ltso |  |-  < Or RR | 
						
							| 6 | 5 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 7 | 6 1 2 3 4 | supgtoreq |  |-  ( ph -> ( C < S \/ C = S ) ) | 
						
							| 8 | 1 3 | sseldd |  |-  ( ph -> C e. RR ) | 
						
							| 9 | 3 | ne0d |  |-  ( ph -> B =/= (/) ) | 
						
							| 10 |  | fisupcl |  |-  ( ( < Or RR /\ ( B e. Fin /\ B =/= (/) /\ B C_ RR ) ) -> sup ( B , RR , < ) e. B ) | 
						
							| 11 | 6 2 9 1 10 | syl13anc |  |-  ( ph -> sup ( B , RR , < ) e. B ) | 
						
							| 12 | 4 11 | eqeltrd |  |-  ( ph -> S e. B ) | 
						
							| 13 | 1 12 | sseldd |  |-  ( ph -> S e. RR ) | 
						
							| 14 | 8 13 | leloed |  |-  ( ph -> ( C <_ S <-> ( C < S \/ C = S ) ) ) | 
						
							| 15 | 7 14 | mpbird |  |-  ( ph -> C <_ S ) |