Step |
Hyp |
Ref |
Expression |
1 |
|
supicc.1 |
|- ( ph -> B e. RR ) |
2 |
|
supicc.2 |
|- ( ph -> C e. RR ) |
3 |
|
supicc.3 |
|- ( ph -> A C_ ( B [,] C ) ) |
4 |
|
supicc.4 |
|- ( ph -> A =/= (/) ) |
5 |
|
iccssre |
|- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
6 |
1 2 5
|
syl2anc |
|- ( ph -> ( B [,] C ) C_ RR ) |
7 |
3 6
|
sstrd |
|- ( ph -> A C_ RR ) |
8 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
9 |
8
|
rexrd |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
10 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
11 |
10
|
rexrd |
|- ( ( ph /\ x e. A ) -> C e. RR* ) |
12 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ( B [,] C ) ) |
13 |
|
iccleub |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C ) |
14 |
9 11 12 13
|
syl3anc |
|- ( ( ph /\ x e. A ) -> x <_ C ) |
15 |
14
|
ralrimiva |
|- ( ph -> A. x e. A x <_ C ) |
16 |
|
brralrspcev |
|- ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y ) |
17 |
2 15 16
|
syl2anc |
|- ( ph -> E. y e. RR A. x e. A x <_ y ) |
18 |
|
suprcl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) -> sup ( A , RR , < ) e. RR ) |
19 |
7 4 17 18
|
syl3anc |
|- ( ph -> sup ( A , RR , < ) e. RR ) |
20 |
7
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
21 |
3
|
adantr |
|- ( ( ph /\ x e. A ) -> A C_ ( B [,] C ) ) |
22 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
23 |
|
iccsupr |
|- ( ( ( B e. RR /\ C e. RR ) /\ A C_ ( B [,] C ) /\ x e. A ) -> ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) ) |
24 |
8 10 21 22 23
|
syl211anc |
|- ( ( ph /\ x e. A ) -> ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) ) |
25 |
24 18
|
syl |
|- ( ( ph /\ x e. A ) -> sup ( A , RR , < ) e. RR ) |
26 |
|
iccgelb |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> B <_ x ) |
27 |
9 11 12 26
|
syl3anc |
|- ( ( ph /\ x e. A ) -> B <_ x ) |
28 |
|
suprub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ x e. A ) -> x <_ sup ( A , RR , < ) ) |
29 |
24 22 28
|
syl2anc |
|- ( ( ph /\ x e. A ) -> x <_ sup ( A , RR , < ) ) |
30 |
8 20 25 27 29
|
letrd |
|- ( ( ph /\ x e. A ) -> B <_ sup ( A , RR , < ) ) |
31 |
30
|
ralrimiva |
|- ( ph -> A. x e. A B <_ sup ( A , RR , < ) ) |
32 |
|
r19.3rzv |
|- ( A =/= (/) -> ( B <_ sup ( A , RR , < ) <-> A. x e. A B <_ sup ( A , RR , < ) ) ) |
33 |
4 32
|
syl |
|- ( ph -> ( B <_ sup ( A , RR , < ) <-> A. x e. A B <_ sup ( A , RR , < ) ) ) |
34 |
31 33
|
mpbird |
|- ( ph -> B <_ sup ( A , RR , < ) ) |
35 |
|
suprleub |
|- ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ C e. RR ) -> ( sup ( A , RR , < ) <_ C <-> A. x e. A x <_ C ) ) |
36 |
7 4 17 2 35
|
syl31anc |
|- ( ph -> ( sup ( A , RR , < ) <_ C <-> A. x e. A x <_ C ) ) |
37 |
15 36
|
mpbird |
|- ( ph -> sup ( A , RR , < ) <_ C ) |
38 |
|
elicc2 |
|- ( ( B e. RR /\ C e. RR ) -> ( sup ( A , RR , < ) e. ( B [,] C ) <-> ( sup ( A , RR , < ) e. RR /\ B <_ sup ( A , RR , < ) /\ sup ( A , RR , < ) <_ C ) ) ) |
39 |
1 2 38
|
syl2anc |
|- ( ph -> ( sup ( A , RR , < ) e. ( B [,] C ) <-> ( sup ( A , RR , < ) e. RR /\ B <_ sup ( A , RR , < ) /\ sup ( A , RR , < ) <_ C ) ) ) |
40 |
19 34 37 39
|
mpbir3and |
|- ( ph -> sup ( A , RR , < ) e. ( B [,] C ) ) |