| Step | Hyp | Ref | Expression | 
						
							| 1 |  | supicc.1 |  |-  ( ph -> B e. RR ) | 
						
							| 2 |  | supicc.2 |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | supicc.3 |  |-  ( ph -> A C_ ( B [,] C ) ) | 
						
							| 4 |  | supicc.4 |  |-  ( ph -> A =/= (/) ) | 
						
							| 5 |  | supiccub.1 |  |-  ( ph -> D e. A ) | 
						
							| 6 |  | iccssre |  |-  ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) | 
						
							| 7 | 1 2 6 | syl2anc |  |-  ( ph -> ( B [,] C ) C_ RR ) | 
						
							| 8 | 3 7 | sstrd |  |-  ( ph -> A C_ RR ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 10 | 9 | rexrd |  |-  ( ( ph /\ x e. A ) -> B e. RR* ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 12 | 11 | rexrd |  |-  ( ( ph /\ x e. A ) -> C e. RR* ) | 
						
							| 13 | 3 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. ( B [,] C ) ) | 
						
							| 14 |  | iccleub |  |-  ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C ) | 
						
							| 15 | 10 12 13 14 | syl3anc |  |-  ( ( ph /\ x e. A ) -> x <_ C ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( ph -> A. x e. A x <_ C ) | 
						
							| 17 |  | brralrspcev |  |-  ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y ) | 
						
							| 18 | 2 16 17 | syl2anc |  |-  ( ph -> E. y e. RR A. x e. A x <_ y ) | 
						
							| 19 | 8 5 | sseldd |  |-  ( ph -> D e. RR ) | 
						
							| 20 |  | suprlub |  |-  ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ D e. RR ) -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) | 
						
							| 21 | 8 4 18 19 20 | syl31anc |  |-  ( ph -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |